
The reverse mode of automatic
differentiation applied to the MATLAB
language – advanced methods for adjoint

code generation

Dem Fachbereich Informatik
der Technischen Universität Darmstadt

zur Erlangung des akademischen Grades eines
Doctor rerum naturalium (Dr. rer. nat.)

vorgelegte

Dissertation

von

Johannes Willkomm, Dipl.-Inf.

aus
Aachen

The reverse mode of automatic differentiation applied to the MATLAB language – advanced meth-
ods for adjoint code generation

Dissertation by Johannes Willkomm

1. Review: Prof. Dr. Christian Bischof
2. Review: Prof. Dr. Uwe Naumann

Date of submission: September 23, 2020
Date of thesis defence: –

Darmstadt – D17

Bitte zitieren Sie dieses Dokument als:
URN: urn:nbn:de:tuda-tuprints-123456
URL: https://tuprints.ulb.tu-darmstadt.de/123456/

Dieses Dokument wird bereitgestellt von tuprints,
E-Publishing-Service der TU Darmstadt
http://tuprints.ulb.tu-darmstadt.de
tuprints@ulb.tu-darmstadt.de

Die Veröffentlichung steht unter folgender Creative Commons Lizenz:
Namensnennung – Nicht kommerziell – Keine Bearbeitung 4.0 International
(CC BY-NC-ND 4.0)

This work is licensed under the following license
Attribution – NonCommercial – NoDerivatives 4.0 International
(CC BY-NC-ND 4.0)

https://tuprints.ulb.tu-darmstadt.de/123456/
http://tuprints.ulb.tu-darmstadt.de
mailto:tuprints@ulb.tu-darmstadt.de

Jede Zeit hat ihre Aufgabe, und durch die Lösung derselben rückt die
Menschheit weiter.
Heinrich Heine (Reisebilder, Italien, Kap. 19)

Ich widme diese Arbeit meiner Familie, meinen Eltern, meiner Frau und meinen Kindern, die mich
während der gesamten Zeit geduldig unterstützt haben.

Preface
This work was written over the course of several months of the year 2020. In this time, I was
finally able wrap up my studies regarding the reverse mode of automatic differentiation for the
MATLAB language (ADiMat) and write these pages. When putting to paper the ideas that guided
me during the design and implementation of ADiMat, even some new results were obtained.

I would like to thank Prof. Christian Bischof and Prof. Martin Bücker for many fruitful
discussion on the many subjects regarding and relating to automatic differentiation, from which
oftentimes would spring up new ideas. I would also like to thank my wife and my family for
supporting me throughout the entire time which I spend working on the software ADiMat and
this dissertation, without which this work would not have been possible.

Aachen, in September 2020
Johannes Willkomm

iv

Zusammenfassung
Das Software-Werkzeug Automatisches Differenzieren für MATLAB (ADiMat) wird um den Rückwärts-
oder Adjungiertenmodus erweitert. Dieser erlaubt die hocheffiziente Berechnung der Ableitungen
von skalaren Funktionen, d.h. langer Gradienten und großer Hesse-Matrizen, und spielt damit eine
zentrale Rolle in vielen Verfahren zur numerischen Optimierung, beispielsweise Formoptimierung,
Datenassimilierung und beim Deep Learning, beim Trainieren tiefgeschachtelter neuronaler Netze.
ADiMat erlaubt die automatische Generierung von Adjungiertencode für beliebige in MATLAB
geschriebene Funktionen und Programme. Zur Umsetzung des Adjungiertencodegenerators in
ADiMat wurde erstmals XML zur Repräsentation des abstrakten Syntaxbaumes und XSLT zur
Transformation desselben eingesetzt. Dieser innovative Ansatz im Compilerbau hat sich dabei als
tragfähig und vielversprechend erwiesen.

Abstract
The software tool Automatic Differentiation for MATLAB (ADiMat) is enhanced with support
for the reverse mode or adjoint mode. The adjoint mode allows the highly efficient evaluation of
derivatives of scalar functions, i.e. of long gradients and large-scale Hessian matrices, and thus
plays a central role in many algorithms for numerical optimization, such as shape optimization,
data assimilation and deep learning, the training of deeply nested neural networks. ADiMat
allows the automatic generation of adjoint code for arbitrary functions and programs written in
MATLAB. For the first time, in the implementation of the adjoint code generator in ADiMat XML
was used for representation of the abstract syntax tree while XSLT was used for the transformation
of said tree. This innovative approach to compiler construction has proven itself viable and
promising.

v

CONTENTS

Contents
Preface iv

Zusammenfassung v

Abstract v

Contents vi

1 Introduction 1
1.1 The reverse mode of automatic differentiation . 2
1.2 Scientific contributions of the author in this work 2
1.3 Structure of this work . 3

2 ADiMat 3
2.1 What AD can do and where AD is employed . 4
2.2 The design and development of ADiMat . 5
2.3 Releated work . 5

2.3.1 Other languages . 5
2.3.2 Software that incorporates AD . 6
2.3.3 ADiMat namesakes . 6

2.4 ADiMat use cases . 6
2.5 Derivative classes . 7
2.6 Forward mode source transformation . 9
2.7 Reverse mode source transformation . 10
2.8 The ADiMat transformation server . 10
2.9 Stacks for the reverse mode . 11
2.10 Alternative derivative evaluations . 11
2.11 Taylor propagation . 11
2.12 Hessian evaluation . 11

2.12.1 Alternative Hessian evaluation modes . 12
2.12.2 Hessian of Lagrangian . 12

3 Adjoint code generator techniques 12
3.1 Data model and structural manipulations . 13
3.2 Binary scalar expansion . 14

3.2.1 Generalized binary scalar expansion . 14
3.2.2 Automatic generalized binary scalar expansion in Octave 14

3.3 Array selections: indexed expressions and assignments 14
3.3.1 Multiple pairs of parentheses in expressions 15

3.4 Optimization . 15
3.5 Complex expansion . 16

4 Efficient I/O for the reverse mode 16
4.1 Introduction . 18
4.2 Related work on I/O in high-performance computing 19
4.3 The need for accessing data in reverse order . 20
4.4 An interface between RIOS and automatic differentiation tools 23

4.4.1 Stack interfaces in Tapenade . 23
4.4.2 Stack interfaces in ADiMat . 23
4.4.3 Common backend for ADiMat and Tapenade stacks 25

4.5 RIOS: A custom stream buffer for reverse reading 26
4.5.1 File I/O facilities in C and C++ . 26
4.5.2 Buffering strategies of file I/O in C . 27

vi

CONTENTS

4.5.3 Buffering strategies of file I/O in C++ . 28
4.5.4 Design and implementation of custom stream buffers 29
4.5.5 Architecture and buffering strategy of a special-purpose stream buffer for

reverse reading . 30
4.6 Performance results . 34

4.6.1 Test A: Artificial simulation code . 35
4.6.2 Test B: Solution of Burgers equation . 36

4.7 Conclusion and Future work . 41
4.8 Source code listings . 42

5 The differentiation of selected MATLAB toolbox functions and builtins 44
5.1 Generic approaches to the differentiation of toolbox functions and builtins 46

5.1.1 Arithmetic propagation . 46
5.1.2 Structural propagation . 48
5.1.3 Algorithmic propagation . 49

5.2 Case study: Legendre functions . 50
5.3 Case study: the multiplication operators . 50

5.3.1 Component-wise multiplication . 51
5.3.2 Matrix multiplication . 51
5.3.3 Convolution . 51
5.3.4 Kronecker product . 52

6 Treeprocessing with XML and XSLT for AD and other structural transforma-
tions 53
6.1 XML terms and definitions . 54

6.1.1 XML documents with the leaf text property 56
6.2 XPath and XSLT terms and definitions . 58

6.2.1 The literal output principle of XSLT . 60
6.3 The expressive level of XML compared to other data structures 61
6.4 The expressive level of XSLT compared to other languages 62
6.5 AST representation in XML . 63

6.5.1 XML AST elements and namespaces . 64
6.5.2 XML AST examples . 68
6.5.3 Abstract XML AST elements and namespaces 73

6.6 XSLT processing steps for AST XML . 74
6.7 The suspension bridge design model for the adjoint code generator 81
6.8 Facilitating XML and XSLT processing for problem solving 84

6.8.1 Setting up XSLT pipelines . 86
6.8.2 P2X . 87
6.8.3 R2X . 88

6.9 Generative programming with XSLT . 90
6.9.1 Generating XML pipeline definitions . 92

6.10 Case study: The XC electronic document system 92
6.10.1 Production use of XC system at fionec GmbH 94

6.11 XML document types, schemas and validation . 95

7 Complex arithmetic 96
7.1 Methods to evaluate derivatives of non-analytic complex arithmetic 100
7.2 Application of complex arithmetic in forward-mode AD 102
7.3 Application of complex arithmetic in reverse-mode AD 103
7.4 Case Study: A fully non-analytic example . 104
7.5 Case study: the norm function and application to complex optimization 105

8 Conclusion 106

vii

CONTENTS

References 108

viii

1. Introduction

1 Introduction

In this dissertation thesis we describe our work to implement the reverse mode (RM) of automatic
differentiation (AD) in the ADiMat software. This mainly takes the form of a code generator or
transpiler for so-called adjoint code. This adjoint code is an augmented version of the original
code which is able to evaluate the derivatives of some numerical results with respect to selected
numerical parameters.

The reverse mode has several interesting properties which make it a valuable tool to obtain
derivatives, in particular in the context of large-scale optimization. The relative costs for comput-
ing gradients and Hessian matrices with the reverse mode are on an entirely different asymptotical
regime than all other methods for computing derivatives, both standard numerical methods or the
forward mode of automatic differentiation. The only exception is solving adjoint PDEs to obtain
the gradient of a PDE solution, hence the name adjoint code. Thus, an adjoint code generator
enabling the reverse mode of automatic differentiation for the MATLAB language is an important
step in the furthering of more wide-spread application of automatic differentiation to optimization
and other problems were derivatives are required.

One serious challenge is the huge amount of storage that is required for the reverse mode, in the
form of a stack. Here however, given the historic, recent and current technological developments,
we can safely say that the time is working for the reverse mode. With both fast flash storage and
ever faster data busses, and ever larger volatile RAM, the RM automatically becomes applicable to
ever larger problems. Given that the basic typography of the memory hierarchy is likely to remain,
it is still worthwhile to consider techniques to exploit the memory gaps at the different levels. Here
we developed efficient techniques to handle the stack memory. The first solution is obviously to
keep it all in RAM, and in the MATLAB interpreter, but when that is not sufficient, we can store
the objects in the stack away in the farther, slower levels of the hierarchy, e.g. on disks. Given that
the rate at which the date is produced and written by the AD process is generally much lower than
the CPU throughput we can employ asynchronous writing and asynchronous prefetching before
reads with much advantage and thus ideally avoid I/O wait times. This is then reflected in the
fact that the measured AD time overhead reaches the vicinity of what is predicted by the theory
[WBMB15].

In comparison to classical adjoint code, the generated adjoint code for MATLAB requires in
several instances additional elements to ensure a correct operation in all cases. These are inserted
for working around special cases in the program reversal, which generally concern the undoing of
implicit structural changes in variables [WBB12], such as binary expansion and reshaping. While
these additional elements are really only needed in some cases they must be inserted everywhere
because it cannot be predicted where they are required due to the lack of type and shape infor-
mation.

Another case were additional measures are required in the adjoint code for MATLAB are
indexed expressions. Here, in the case of repeated integer values, MATLAB has different semantics
in indexed expressions on the left hand side (LHS) and on the right hand side (RHS) of assignments.
This makes it impossible to move an adjoint together with its index to the other side of an
assignment in general. Fortunately this problem can be solved fairly efficiently by constructing the
sparse binary matrices representing the corresponding partial derivatives of the index operations.

When we wish to apply differentiation to a non-analytic function in complex variables c =
(<c,=c), we can obtain both derivatives df

d<c and df
d=c by treating <c and =c as two separate

variables, which doubles the expense in terms of numbers of directional derivatives. Interestingly,
when we apply the RM we obtain both in one run as the RM returns in fact (df

d<c ,−
df

d=c). This
surprising result has obvious applications in the field of complex optimization, but that is in fact
much less spectectacular that it looks at first glance, since the reverse mode itself obtains the main
advantage: in the case of long gradients, that is for the derivative of f(c) ∈ R w.r.t. c ∈ CN we
need O(2N) = O(N) additional operations in FM versus O(1) additional operations in RM, which
are the same asymptotical overheads as in the real domain, in both FM and RM.

1

1. Introduction

1.1 The reverse mode of automatic differentiation
The reverse mode of AD arises when the derivatives are accumulated in reverse direction of the
original program flow in the form of adjoints, starting with the adjoint of the function result
and working backwards until the adjoint of the function parameters are obtained [GW08a]. The
advantage of this approach is that the computational expense depends linearly on the number of
components M in the function results, that is, the time overhead of a reverse mode process over
the original function is bound by O(M). This contrasts with the corresponding bound of O(N) in
the forward mode of AD, where N is the number of parameter components. In particular, the RM
can evaluate gradients of a scalar function with constant time overhead O(1), independent of the
length N of the gradient. When the forward and the reverse mode are combined to evaluate second
order derivatives, a Hessian-vector product of a scalar function also has constant time overhead
O(1), while a full Hessian matrix can be obtained in time overhead O(N). The same results in
second order forward mode would require O(N) and O(N2), resp.

The huge challenge to successfully apply the reverse mode is that it requires a large amount of
memory, which is bound by O(tf), where tf is the runtime of the original program. These unusual
memory requirements stem from the fact that intermediate values in the program are required
to evaluate the partial derivatives during the adjoint accumulation. However, the amount of
memory required can be reduced drastically to O(log(tf)) using the techniques of checkpointing
and recomputation. Also, software solutions such as asynchronous I/O can help to enhance the
performance of the huge data movements.

The reverse mode was applied very early already to higher-level mathematical computer sys-
tems, like Maple [MR96]. The reverse mode is applied to C++ by the AD software ADOL-C
[Cor+92; GJU96] and CppAD [BB08], which both perform operator overloading to capture the
computations to differentiate. The reverse mode is also implemented by source transformation
in the AD software Tapenade [Cou+03; HAP05], where so-called adjoint code is generated for
Fortran and Fortran90 [PH05]. In ADiMat we also rely on source transformation, and hence an
adjoint code generator is constructed to implement the reverse mode.

An interesting property of the reverse mode when applied to complex arithmetic is that the
adjoints carry a different derivative value in the imaginary part than the derviatives resulting from
the forward mode.

1.2 Scientific contributions of the author in this work
This dissertation contains both scientific contributions that have already been published in journal
or conference papers and as of yet unpublished results:

1. The new user interface for ADiMat, such as the driver functions admDiffFor, admDiffRev,
and admHessian, which automate the code generation and invocation, was published in
[WBB14]. This is contained in abbreviated form in Chapter 2 of this work

2. The handling of dynamic reshaping and scalar expansion in the adjoint code was published
in [WBB12] and is summarized in this work in Chapter 3

3. RIOS, the efficient asynchronous prefetching I/O subsystem used to store the stack data
produced by the adjoint code was published in [WBMB15], which constitutes the bulk of
the content of Chapter 4 in this work

4. ADiMat was applied to several projects with the authors help, including one using exact Ja-
cobians in an implicit Newton method for solving multiphase flow in porous media [Büs+14]
and the sensitivity analysis of a force and microstructure model for plate rolling [Seu+12;
Seu+13]

5. The derivatives of the legendre builtin function where derived and implemented into ADiMat
in the context of work on estimating the expansion coefficients of a geomagnetic field model
[BW18], briefly referred to in this work in Section 5.2

2

2. ADiMat

6. Work on automatic differentiation of ODE integration was done by the author and published
as a preprint [Wil18]

7. The correct handling of repeated integer indices in index expression can be achieved by
constructing the partial derivatives of these operations, which is efficiently possible by per-
forming a mock index operation on suitable adjuvant objects. This is a new unpublished
contribution of this work, in Section 3.3

8. Expanding on the idea of constructing the partial derivatives of index expressions, we devise
a method to construct those of the kron multiplicative operator, as described in Subsection
5.3.4, which is previously unpublished

9. For the multiplicative operator conv we derive the adjoint expression, which is a convolution
with the reversed filter. While an equivalent technique is evidently used in the backprop-
agation procedure of convolutional neural networks, we could not find a description of the
mathematical derivation and hence publish our method here in Subsection 5.3.3

10. Another unpublished contribution of this work is the Chapter 7 dealing with the peculiarities
of complex-valued arithmetic in the reverse mode of AD, in particular explaining why forward
and reverse mode may yield different results when a complex-valued computation is not
analytic, that is, not complex differentiable

1.3 Structure of this work
This work is structured as follows: In Section 2 we introduce ADiMat and present its functionality,
its user interface and how it is organized internally. In Section 3 we discuss peculiarities of the
adjoint code generator for MATLAB and the measures that we take to cover the many challenges
that arise from the interpreted nature of the language. In Section 4 we present work done for the
efficient handling of the large scale stack data sets that may be produced by runs of adjoint code.
In Section 5 we discuss for some selected builtins how the correct derivative propagation rules
were derived and implemented in ADiMat, as well as some general techniques that are available
for that purpose. In Section 6 we present the architecture of the adjoint code generator which is
implemented in XSLT and thus explores new avenues in compiler construction. In Section 7 we
present our results regarding the different values that are obtained in complex-valued arithmetic
from the derivatives in forward mode of AD versus the adjoints produced by the reverse mode.
We finish this work with some conclusions and an outlook in Section 8.

2 ADiMat
The main development goal of ADiMat is the provision of AD for the MATLAB language. Today
this is a complex system of two MATLAB source code transformations for the forward and reverse
mode of AD and several so called derivative classes with a user friendly interface that hides
many of the complexities of the AD evaluation process. For second and higher order derivatives,
in particular for Hessians evaluated in forward-over-reverse mode, ADiMat also has a classical
derivative propagation class with overloaded operators. A special feature for the reverse mode
is the provision of several high-performance I/O functions used for the numerous push and pop
operations arising in the reverse mode evaluation.

ADiMat was developed at RWTH Aachen University and TU Darmstadt. Development was
started by André Vehreschild in 2006 and continued until 2010 at RWTH Aachen University. This
work encompasses roughly speaking the forward mode implementation in use until now, including
the parser for the MATLAB language [Veh09]. Development continued with the author beginning
work on the reverse mode in 2008 at RWTH Aachen University and continued until 2013 at TU
Darmstadt. Some additional features, such as the fully correct implementation of complex valued
derivatives in reverse mode, the handling of repeated indices in index expressions in reverse mode,

3

2. ADiMat

and the addition of derivate propagation rules for several builtins, such as legendre, conv, and
kron amont others, were added over time in the years leading up to the present, by the author.

The user interface for ADiMat has been explicitely designed to maximize the ease of use. Basi-
cally the user can provide seed matrices and is presented with Jacobian and Hessians, as described
in the AD literature, while compression is handled transparently when the non-zero pattern of the
Jacobian is provided [WBB14]. The user interface also delegates the actual source code transfor-
mation to the ADiMat transformation server, automatically and transparently sending the code
to be differentiated to the server and receiving the differentiated code in return. For maximum
efficiency, the differentiated code can still be invoked manually of course.

In the following subsections the high-level driver functions are mentioned alongside the more
technical description of the underlying AD process, after a short introduction to AD and ADiMat
in general, and a non-exhaustive list of use cases found in the literature.

2.1 What AD can do and where AD is employed

Automatic differentiation (AD) can be employed wherever derivatives of numerical functions and
algorithms are required. In particular, derivatives are in practice often approximated by finite
differences, which has the great advantage that just the function definition and implementation is
required. However, since finite differences are by necessity accurate to at most half the number
of available digits only [Wik20e], it is almost always much better to use the fully accurate deriva-
tives. These may be obtained with analytical differentiation, by the complex variable method in
case of a real analytic function [LM67], by evaluating the adjoint partial diffential equation in
case of a partial diffential equation (PDE), or with AD. Numerous studies have been conducted
to investigate the advantages that can be gained from using correct, fully accurate, derivatives
[MC05].

An particularly interesting field are adjoint approaches, that is, the reverse mode of AD, which
can compute very long gradients in a runtime that is a small multiple of the original function
runtime. This has been used in large scale shape optimization [GKS05] and in recent times in
deep learning, where the famous backpropagation algorithm is just the special case of the reverse
mode applied to a neural network [GBC16].

Since the reverse mode has no equivalent method finite differences, the reverse mode is a sine
qua no to obtain such efficient gradients. There is however one exception: when solving a partial
differential equation (PDE), it is possible to set up the adjoint PDE and solve that to obtain the
gradient. This approach has allowed large scale shape optimization in aerospace [Reu+96; NJ01]
and in electromagnetic design [LK+13] and also data assimilation used in climate and weather
modeling [Li+93; HHG05].

While this approach is often not trivial, given that the adjoint equation must first be found
and that it may then require different methods for the solution than the original PDE, the result
is equivalent to the reverse mode gradient. For this reason, the reverse mode is also called adjoint
mode, and the resulting gradient is called a discrete adjoint [Nad03], given that in a PDE context
it will be obtained by differentiation through the discretization that is used to approximate the
PDE solution.

Also in this case the relative merits and advantages of using AD gradients versus adjoint
solutions have been investigated [Cou+03; PZG05; Rac+18; CM05], also for example by the author
in a work on discrete and continuous adjoint approaches to estimate boundary heat fluxes in falling
films [Büc+10], where the DROPS [Ber+10; GR13] numerical package was differentiated with
ADOL-C [Gri+99] in reverse mode and a reversal scheme using the checkpointing tool revolve
[GW00] was used to evaluate the gradient of a Poisson PDE very efficiently. Note that in this
case of the Poisson equation the PDE is self-adjoint, that is, the adjoint PDE is identical to the
original PDE.

4

2. ADiMat

2.2 The design and development of ADiMat
The first beginnings of ADimat where the idea of combining source transformation and operator
overloading techniques to compute derivatives for MATLAB programs [Bis+02]. This so called
hyprid approach allows that a single version of the differentiated code can be invoked either with
native data types for the derivatives to obtain the scalar mode of AD, or with special overloaded
data types to obtain the vector mode. In comparison with a classical AD approach using an
overloaded data type on the main advantage of the hybrid approach is that the set of operations
that the overloaded type must support is defined by the generated code, and hence much more
limited in scope. Over the years the system was completed to a full implementation of the forward
mode of automatic differentiation for MATLAB programs [BLV03]. A system for interfacing
MATLAB with external software geared toward automatic differentiation was devised [BEV06].
Special cases, such as coping with a variable number of arguments when transforming MATLAB
programs where covered by dedicated approaches [BV08]. Code optimization techniques in source
transformations for interpreted languages, including constant folding, loop unrolling, constant
propagation, forward substitution, and common subexpression elimination, also in the case of
ADiCape, where explored [BPV08]. Finally, in his PhD thesis André Vehreschild detailed his
work on the design and implementation of ADiMat [Veh09].

The author took first steps generating adjoint expressions for Matlab [Wil10] and developed
a new user interface for ADiMat [WBB14]. It turned out the impact of dynamic data reshaping
on adjoint code generation for weakly-typed languages such as Matlab has to be handled by
dedicated techniques [WBB12], as well as the adjoint transformation of binary MATLAB operators
[WB10]. The stack which is required for data storage in the reverse mode was handled by a
dedicated software layer called RIOS, which facilitates efficient I/O in reverse direction [WBMB15].
The development was continued with work on source transformation for the optimized utilization
of the MATLAB runtime system for automatic differentiation [HWB15], and with a work on
estimating the expansion coefficients of a geomagnetic field model using first-order derivatives
of associated Legendre functions [BW18]. The ADiMat system is documented in an extensive
electronic handbook [VW13].

2.3 Releated work
Related work on AD in general are numerous, and on AD for MATLAB in particular we would like
to mention the first work on source transformation for MATLAB automatic Differentiation which
is implemented by the tool MSAD [KF06], also described in a PhD thesis [Kha12]. TOMLAB/MAD
is an efficient overloaded implementation of forward mode automatic differentiation in MATLAB
[For06]. CasADi is a symbolic package for automatic differentiation and optimal control [AÅD12].
ADiGator is a toolbox for the algorithmic differentiation of mathematical functions in MATLAB
using source transformation via operator overloading [WR17] based on an efficient overloaded
method for computing derivatives of mathematical functions in MATLAB [PWR13]. Other work
has also been done on automatic differentiation with MATLAB object-oriented programming
[Nei10].

2.3.1 Other languages

Nowadays there are AD tools for almost any programming language used in a numerical or tech-
nical context, so it is not sensible to list them all here. By our experience, the best and the
most predictable performance can be obtained from using AD on low level languages, for exam-
ple ADiFor for Fortran [Bis+92a; Bis+96; BG92], Tapenade [HAP05] for Fortran and C [PH08],
ADOL-C [Gri+99] or CppAD [BB08] for C and C++, TAF for Fortran and TAMC for C [GK03],
OpenAD/F for Fortran [Utk+08a], or the NAGWare Fortran compiler [NR06]. These tools are also
very stable and cover their languages almost completely.

For interpreted languages, which are understandably highly popular due to the much reduced
development effort, the maturity and the performance of the available AD tools tends to vary a

5

2. ADiMat

lot, from one tool to the other, but also from one problem instance to the next. Even for ADiMat,
while there are numerous cases were it was shown to produce correct results efficiently, there are
also many others were the runtime was found to be quite large, for example. There resons are often
found in inadequate vectorization of the original function, but may also be down to other reasons
in ADiMat itself. Moreover, ADiMat does still not completely cover the MATLAB language, in
the sense that there are many toolbox functions that are not supported yet. In every such case
a detailed investigation will determinine the root cause, so ADiMat is still a work in progress
and user feedback and cooperation with the developers is required for further refinement of the
software. The situation with regards to other AD tools for high-level languages such as MATLAB,
Python, R, or Julia is probably very similar.

As an example, in a study on nonlinear model predictive control using decoupled ab net formu-
lation for carbon capture systems-comparison with algorithmic differentiation approach [MMZ18]
discuss two alternative control formulations, one using derivatives and another linear one. In per-
formance results the derivative based approach is slower but arguably more exact and responsive
in the control test. With regards to the derivative, a hand code derivative is predictably 3-8 times
faster than the derivative evaluated with ADiMat. This would be the factor in computational
effort that one has to take into account for the price of saving on programming effort by just using
AD to compute the derivative. This factor is in our view not particularly bad at all, but rather
surprisingly good.

Recently, a survey of AD tools has been conducted recently with regards to machine learning
[Bay+17], which tabulates many languages and the available AD tools, so we will not endeavour
to list all the available AD tools here. A new addition to the list is the authors software R/ADR
which translates the basic design ideas of ADiMat to the language R [Wil20b].

2.3.2 Software that incorporates AD

Many high-level modelling and optimization frameworks use AD internally. The approach is usally
that the problem is formulated by the user in some abstract form, like a domain specific language,
and the framework will then automatically generate the appropriate code to evaluate the forward
function and the derivatives. Examples are AMPL [Gay91; Gay96; Gay15] and the AD Model
Builder, which uses automatic differentiation for statistical inference of highly parameterized com-
plex nonlinear models doi:10.1080/10556788.2011.597854. Also, all the available deep learning
and AI frameworks such as TensorFlow or PyTorch incorporate AD since the backpropagation
algorithm is a special case of the reverse mode.

2.3.3 ADiMat namesakes

We shall also not fail to mention two further software projects which are also called ADIMAT, but
have no relation to automatic differentiation. The first is the finite element software ADIMAT
[Bat77], used in experimental and mathematical investigation of response characteristics and aging
phenomena in safety fuse elements [Hof87] and in a thermoelastic hydrodynamics analysis of EMP-
segments of thrust bearing [Zho96]. The second is a phase diagram assistant software also called
ADIMAT [ELN06].

2.4 ADiMat use cases
Over the years, ADiMat has found application in numerous scenarios. One where the author
has been involved is the sensitivity analysis of a force and microstructure model for plate rolling
[Seu+12; Seu+13], another one is using exact Jacobians in an implicit Newton method for solving
multiphase flow in porous media [Büs+14].

When conducting a stiffness analysis of cardiac electrophysiological models, the authors use
ADiMat to examine the eigenvalues of the Jacobian of a variety of cardiac electrophysiological
models [SD10]. In the work on a generic approach for the solution of nonlinear residual equations,
sensitivity computations are conducted using a combination ADiMat with another AD tool called

6

doi:10.1080/10556788.2011.597854

2. ADiMat

Diamant [LCD11]. Investigating the question of whether to trust derivatives or differences, the
authors use ADiMat to compute the derivatives for their comparisons [MW14]. In a PhD the-
sis from the University of Dortmund, ADiMat is used in the optimal control of the relativistic
Maxwell-Newton-Lorentz equations [Tho15]. ADiMat has been used in an investigation on deriva-
tives in time and frequency domains [BW17]. In a work on gradient- and Hessian-enhanced least
square support vector regression(LSSVR) the authors show that the incorporation of Hessian in-
formation, obtained with ADiMat and Tapenade, into LSSVR models has great advantages [JZ18].
In the work on preconditioning jacobian systems by superimposing diagonal blocks the authors
demonstrate their results with numerical experiments using ADiMat [RB20]. The differentiation
of ODEs has been explored using ADiMat [Wil18].

In a benchmark of selected algorithmic differentiation tools on some problems in computer
vision and machine learning [SKF18] conducted, ADiMat completes most of the tests and is even
head-to-head with a manual derivative implementation in one problem instance, for the largest
problem size.

2.5 Derivative classes
The task of the derivative class is described in [Veh09]. They are the means to facilitate the vector
mode in ADiMat, in a so-called hybrid approach of source-transformation and operator-overloaded
[Bis+02]. While the generated source code provides scalar mode AD when run with native data
types, vector mode is obtained by running the same code with the derivative types being instances
of one of the derivative classes. There are two main types of derivative classes. First we have
a derivative class based on cell arrays, where internally the multiple derivative directions of dx
are stored as individual arrays arranged in a cell array, and second, an array-based derivative
class where internally the multiple derivative directions of dx are stored in a single large array of
dimensions [ndd, sz], where ndd is the number of directional derivatives and sz is the size vector
of the array in question.

The relative performance of these approaches is of course quite relevant for the overall perfor-
mance of the code in vector mode. From a small benchmark we obtain the results shown in Figure
1 for the cell based class and those in Figure 2 for the array based class.

The performace of any operation on the cell based class is quite uniform. This is of course
due to the fact that any operation boils down to a loop over the internal cell array. The same
operations on the array class are sometimes very efficient when they can be performed as a single
operation on the internal array. The binary arithmetic operators for example can be handled by
the builtin bsxfun very effectively. The many well-known vector operations, like sum, prod, fft,
etc. and bsxfun itself can trivially be handled with a single call processing the entire internal
array. While it is not vectorized itself, conv can be implemented via conv2.

Interestingly, the matrix multiplication is asymmetric in that regard. Depending on the internal
layout, whether we use [ndd, sz] or [sz, ndd] as the dimension of the internal array, a left
matrix multiplication can be handled with a single matrix multiplication internally while a right
matrix multiplication requires costly data rearrangements with permute or kron, or vice versa
[Veh09]. However, the two operations where the array is reshaped to a vector and multiplied with
a matrix from either left or right are both very efficient, which is crucial as these are the staple of
the standard FM and RM propagation, where the directional derivatives are multiplied with the
the Jacobian matrices of elementary operations.

While the array based derivative class is often more efficient, the implementation is also more
complex. For any operation on the derivatives in the derivative code, the array based derivative
class must have a dedicated method that handles the case efficiently. In the generated code we
often use the method call as a wrapper to the method call, so the emitted code might be for
example call(@mean, d_x). Then, the derivative classes have the method call which applies
the handle to each derivative direction in a loop. For the cell based class this is the best that we
can to anyway, so the cell based class does not require that we actually implement the method
mean. This generic method call is rather inefficient however in the case of the array based class,
even more so than the cell array based derivative class, as the internal array has to processed in

7

2. ADiMat

Figure 1: Performance benchmark of the cell based derivative class for selected operations.

Figure 2: Performance benchmark of the array based derivative class for selected operations.

8

2. ADiMat

slices. Hence it is important that for any method we find a way to perform the operation without
am explicit loop. The method call of the array-based class was constructed to search for and
dispatch to a given method that it has. Continuing the example, in the expression call(@mean,
d_x) the call method will automatically delegate to the method mean once we add that to the
class, and hence this wrapper expression can be used with little penalty in derivative code to keep
it generic.

The performance results provide directions for the relative merits of the arithmetic or structural
derivative propagation techniques, as discussed later also in Section 5.1. For example in the
derivative code the expression mean(x, k) might be differentiated structurally to mean(d_x, k).
This would then require that a method mean is added to the derivative classes, which in the case
of the array based class would boil down to evaluate mean(d_x.derivs, k+1) on the internal
array d_x.derivs and can thus be expected to be efficient. When we can construct the partial
derivative as a sparse matrix this is the ideal case for the array based class as the reshape-to-
vector-and-matrix-multiply operation is by far the fastest of the ones benchmarked.

2.6 Forward mode source transformation

The forward mode source transformation is well described in the dissertation thesis of André
Vehreschild [Veh09]. The concept for the generated code is similar to the forward mode code
generated for example by ADiFor [Bis+92b] or Tapenade [PH05] for Fortran code.

The transformation uses activity analysis depending on the independent and dependent vari-
ables to determine the set of variables that actually require differentiation. Derivative variables
are created for those and associated by name [GW08a]. ADiMat typically uses the prefix g_.

A novel idea idea is to generate code for the scalar mode only, with the golden rule that
a derivative variable g_x has the same type and shape as the original program variable x it is
associated with.

Any work required for the vector mode is then delegated to the derivative classes, described
in the previous Section 2.5. Accordingly the interface is clear: a derivative class object g_x has
to appear as an array of the same size and shape as the associated program variable x, and hide
the multiple directional derivatives internally. This combination of source transformation and
operator overloading in AD is also called a hybrid mode [Bis+02].

For each active function f a differentiated version g_f is generated, which can then be called
as required, either from other differentiated functions or as the top-level function by the user.

The forward code transformation uses a database to store derivative propagation rules for the
spported set of builtins, as described in [BBV05]. This macro language also allows users to create
custom derivatives by code directives.

Work was also done to handle variable argument lists and the special builtins varargin, nar-
gin, varargout, and nargout [BV08].

A new easy-to use interface has been added by the author, facilitating the generation and
invocation of the differentiated code [WBB14]. This interface consists of the single driver func-
tion admDiffFor, which differentiates the source code if necessary given the list of independent
function parameters and dependent function results, invokes the differentiated code appropriately
given the seed matrix S and returns the resulting Jacobian J matrix or Jacobian product J · S in
the form of a matrix.

This high-level driver is not necessarily the right choice when the run of the actual AD code
is short and the derivative is needed repeatedly in a tight loop. A typical example is the ODE
integration functions like ode15s. Here, the kernel function is often rather small and of short
runtime. The various sanity checks and the code generation performed by the drivers can be
turned of via certain options. While the differentiated code can also be called manually, of course,
this requires advanced knowledge of both AD in general and ADiMat in particular.

9

2. ADiMat

2.7 Reverse mode source transformation

The reverse mode source transformation is the main subject of this work and hence described in
detail in subsequent chapters.

In one slight modification over the forward mode transformation, program and derivative vari-
ables may also be of type struct of cell.

On the other hand variable argument lists are not supported and some other semantical struc-
tures are also not allowed, the most prominent possibly being the return statement. It is currently
ignored so it can still be used for handling error conditions which never happen.

Otherwise all control flow statements are supported, these are if, switch, for, while, continue
and break. The declarations global and persistent are also supported.

The parfor control flow statement is rudimentarily supported but there are subtle open issues
regarding the performance of the adjoint accumulation. Exception handling with try and except
is not supported.

Like in the forward mode code transformation the code generation is performed directly by
traversing the AST, not on a basic block representation of the code. This has appearently only
two minor drawbacks in quality of the generated code, namely that the continue and break
statements can induce repetitive sections of the transformed loop body code, which could in theory
lead to combinatorial explosion with multiple nested loops each containing these statements.

The reverse mode transformation uses the same activity analysis as the forward mode trans-
formation. It does not have a to-be-recorded analysis like Tapenade does [HAP05; Nau02].

The interesting feature of this particular reverse mode code generator is that it is implemented
almost entirely in XSLT, with XML as the state or AST representation. The actual transformation
by a sequence of XSLT processing steps is described in more detail in a later Chapter 6. The initial
XML is obtained from the C++ core of ADiMat after the parsing and initial analysis step. To this
end a single overloaded method outputXML is added to the classes representing the various AST
nodes, which traverses the AST and prints XML markup along the way, thus directly rendering the
AST structure in an XML document. Some side information, in particular the variable dependency
and the function call graphs, is also included in the XML. The XML dialect used to represent the
ADiMat AST in XML is a custom develepment called AST XML which is described in section 6.5.

The high level driver function for the reverse mode is called admDiffRev, which has the same
interface as admDiffFor, with the corresponding difference that the product S · J of the seed
matrix S and Jacobian J is returned, as is natural for the reverse mode.

2.8 The ADiMat transformation server

When the new high-level user interface was added to ADiMat, the system was also split in two
components: the transformation server and the runtime environment. The transformation server
is available as a web service at http://adimat.sc.informatik.tu-darmstadt.de. The user
interface drivers send the user code to the transformation server and the differentiated code is
sent back to the user. The differentiated code is stored locally and the user interface drivers
automatically check the file times of the users code files to determine whether the differentiated
code must be refreshed due to a change in the user code. These checks can be turned off for
performance reasons, which is advisable when repeatedly evaluating the same derivative function
in a loop.

The separation of the runtime environment and the transformation server has the advantage
that most compiled code needs to run on the server only, while the runtime environment consists
of MATLAB code only. This greatly facilitates the provision of ADiMat for different operating
systems and hardware architectures. The ADiMat server was first set up in 2011, thus making it
a pioneer in the buoyant area of Software as a service (SaaS) [Wik20f]. Most of the well-known
advantages of this concept apply to ADiMat as well. In particular, many updates require a change
to the server only, which is then immediately available to all users.

10

http://adimat.sc.informatik.tu-darmstadt.de

2. ADiMat

2.9 Stacks for the reverse mode
Basically, there are several variants of the functions adimat_push and adimat_pop, each one
called a stack. The default stack uses a persistent variable to store the stack in memory, in
particular in the working set of the MATLAB interpreter. Other stacks write the objects to the
harddisk, and some of these doing so asynchronously, using multithreading. This is described in
more detail in a later Chapter 4.

2.10 Alternative derivative evaluations
For convenience, comparison and reference the two driver functions admDiffFD and admDiffComplex
are provided to evaluate derivatives numerically based on finite differences and the complex step
method [LM67], respectively. By providing the same interface as the driver for the forward mode,
AD results can easily be verified against alternative methods [WBB14].

2.11 Taylor propagation
Rules for the propagation of truncated Taylor series where established very early in dervelopment
of AD already [BWZ70; Ral81], first for source transformation and then also using operator over-
loading [CR84; BCG93]. Usually univariate Taylor series are propagated since any mixed deriva-
tives can be obtained by intricate interpolations [BCG93; GW08a]. Later works also regarded the
application to MATLAB, including the propagation of multivariable Taylor series [Nei10].

ADiMat also provides a very similarly constructed operator overloading Taylor mode class
@tseries2, which can propagate truncated univariate Taylor series of arbitrary order. The main
purpose is the computation of Hessians in forward-over-reverse mode, as described in the following
Section 2.12.

The set of builtins that are supported is somewhat more limited than those that are handled
by the source transformations of ADiMat. On the other hand, it is relatively easy for users to
add support for a certain builtin, since the Taylor classes are part of the runtime environment of
ADiMat, written in MATLAB, and open source. In each case a method has to be added to the
Taylor mode class implementing the correct rules.

Currently the Taylor mode class of ADiMat has many methods which implement only the first
order derivative propagation and otherwise raise an error. This is the case because the evaluation
of Hessians in forward-over-reverse mode requires only the first order derivative to be provided
by the Taylor class. For example, although in ADiMat we currently implement only first order
derivatives of the builtins eig and eigs, in any of the differentiation modes, we can obtain Hessians
of eigenvalues in forward-over-reverse mode.

Internally there are actually two Taylor mode classes: one for the scalar mode and one for the
vector mode. The vector mode version internally uses one of the derivative classes described in
Section 2.5 to propagate multiple derivative directions simultaneously.

The generic user frontend for Taylor propagation in ADiMat is the function admTaylorFor.
The general forward-over-reverse mode is accessible via admTaylorRev, where the adjoint code
is generated as for admDiffRev and then run with @tseries2 objects. This is exactly the same
thing as is done for Hessians, the only difference is that the truncation order of the Taylor series
can be set arbitrarily >= 1. The adjoint outputs are the derivatives of the Taylor series of the
function result variables w.r.t. all the inputs, as described in more detail in the AD literature
[GW08a].

2.12 Hessian evaluation
The most effective method of Hessian evaluation is the forward-over-reverse mode, which runs the
adjoint code with both the active input arguments and the adjoint input arguments being objects
of the Taylor class @tseries2 limited to first order. As a result we obtain second order derivatives
from the adjoint output arguments. The full Hessian requires O(n) in time overhead and the usual

11

3. Adjoint code generator techniques

O(t) in space overhead of the RM, by a single run of the adjoint code with the Taylor class with
nested derivative class. A Hessian-vector product requires O(1) in time overhead, and again the
usual O(t) in space overhead of the RM, by a single run of the adjoint code with the Taylor class
in scalar mode. There are also other options, which all boil down to twice differentiating in FM,
resulting in O(n2) time overhead [Wil13a].

In forward-over-reverse mode, Hessians or Hessian-vector-products of multiple function out-
puts, in the case of a non-scalar function are evaluated using multiple runs of the adjoint code.
More precisely, linear combinations of the multiple Hessians or Hessian-vector-products are eval-
uated as per the rows of the seed matrix U . One run of the adjoint code is required for each row
in U .

The set of builtins supported by the forward-over-reverse mode is the intersection of the set of
support of the Taylor mode class and that of the adjoint code generator. Furthermore, the Taylor
mode class has to support all the calls in the structural reverse mode propagation rules, i.e. the
runtime functions invoked by the generated RM code.

The user interface for the forward-over-reverse mode Hessians is admHessian. It accepts as
the second argument a cell array with three matrixes U , V andW and returns a linear combination
with weights uk, 1 ≤ k ≤M of the Hk ·W for each row uj , 1 ≤ j ≤ R in U , where Hk is the Hessian
of the k-th function output. More precisely, the computational overhead of admHessian is
O(R ·Q), where R is the number of rows in U and Q is the number of columns in W .

2.12.1 Alternative Hessian evaluation modes

For convenience, comparison and reference the two driver functions admHessFD and admHess-
For are provided. Both are based on second order forward derivatives together with the well-known
interpolation rules [BCG93], which can also be generalized to arbitrary orders [GUW00; GW08b],
admHessFD using second order finite differences and admHessFor using second order Taylor
series. They simultanously compute all the products V ·Hk ·W , where Hk is the Hessian of the
k-th function output.

admHessFor2 has the same interface but uses second order forward mode code generated by
double application of the forward mode code generator [Veh09].

All second order forward based methods require O(PQ) time and space overhead where P and
Q are the outer dimensions of V and W , resp.

2.12.2 Hessian of Lagrangian

The forward-over-reverse mode provides a different form of seeding compared to the second-order
forward-mode. This can be used to to evaluate the so-called Hessian of the Lagrangian, which is
frequently required in optimization routines and solvers using constraints [BGN00; BHN99], such
as fmincon [Mat13]. While the Lagriangian function has multiple outputs the solvers require a
weighted sum of their Hessians. It be computed with a single run of the adjoint code, and hence in
O(n) time overhead, for it is a linear combination of the Hessians of the outputs of the Lagrangian
function.

Example: When we have the function lagrange returning the Lagrangians we can invoke
admHessian(@lagrange, {lambda(:).’, 1, 1}, x) with the vector of weights lambda. To the
same effect, one can also compute the sum of the Lagrangians weighted with lambda, and compute
the Hessian of the resulting scalar function. This example demonstrates the purpose of the adjoint
seed matrix U in the Hessian evaluation, which is set to the vector lambda here.

3 Adjoint code generator techniques
For the most parts the adjoint code generated by ADiMat from MATLAB programs is very similar
to the established procedures [GW08a], such as has been sucessfully implemented for the Fortran
language in the Tapenade AD source transformation [PH05]. Hence we will concentrate on the
differences that arise from the particularities of MATLAB in this section.

12

3. Adjoint code generator techniques

The adjoint code generator by default will generate a store-all or record-all version of the
adjoint code. This means the code is run from start to end in a so called recording sweep, followed
by the reverse sweep of the entire program. However, at any function call the alternative adjoint
mode may be requested instead, which consists of a regular function invocation in the recording
sweep while a recording sweep followed by a reverse sweep is performed at that point in the upper
level reverse sweep. This is done by means of a code directive, and is a very effective measure to
cut down on the size of the stack, as described in the literature and also implemented by Tapenade.

The data model that ADiMat uses in the RM code generator is slightly expanded compared to
the FM. In particular, structs and cell arrays can be used as active variables. The corresponding
task in the adjoint code is very generally to undo any structural change to the program variables,
such that at any point the program variables and adjoint variables have the same data type. For
example, when a struct is created in the program, in the adjoint code at this point the adjoint
struct is picked apart and the field values are extracted, etc. This is described in more detail in
Section 3.1.

In all sorts of operations and builtin functions such structural changes may occur implicitely,
such as automatic scalar expansion done by the binary arithmetic operators and some binary
builtin functions, described in Section 3.2, and array resizing and reshaping in index expressions,
described in Section 3.3. The techniques to handle these implicit changes are described already
in [WBB12]. However, with regards to the index expressions, a particularly interesting case is
when repeated integer indices occur in the index. In these instances the structural propagation
with undoing of implicit reshapes as proposed in [WBB12] is not enough and will fail. A better
solution was only invented recently: By setting up the partial derivatives of the operation as a
sparse matrix we can easily handle all possible cases and at the same time achieve a much better
performance. This is described in more detail in Section 3.3 as well.

In all of these cases there is a considerable difference in the amount of special care that must be
taken in the reverse mode compared to the forward mode. The main reason is that in forward mode
many operations are handled by structural propagation (cf. Section 5.1.2), and differentiate to
themselves, such as times, mtimes, fft, etc. Hence, the same implicit behaviour is automatically
applied to the forward derivatives, so very often no special measures are required. In the reverse
mode however we have to undo such implicit behaviour when we propagate the adjoints. For
example, consider that the fft builtin may pad the input with zeros up to a given length or ignore
parts of the input data, and return a correspondingly shaped FFT. In the FM the same padding is
done on the derivatives, when we just call fft on the derivative variable with the same parameters.
In the RM however, we have to manually undo the padding on the adjoint variable, or add padding
in the case where the input data is used only partially.

The additional code inserted into the adjoint code to undo possible implicit changes comes at
a cost in terms of performance. Hence, the adjoint code generator can be instructed by several
options to not emit these parts of the code. This is used for the differentiation of the replacement
functions where ADiMat uses algorithmic propagation (cf. Section 5.1.3), while the implementa-
tion of the options is facilitated by the use of abstract AST elements in the initial form of the
adjoint code (cf. Section 6.5.3). These relations are described in more detail in the Section 3.4.

There is one case of implicit data type change that has to be handle differently from those
mention above. This is the expansion from real to complex numbers. It can occur when the
square root of a negative number is computed or when a real variable is combined with a complex
number. In this case it would be wrong to undo the type change by coercing the adjoint to a real
value at that point. A simple counterexample is presented in Section 3.5, while the underlying
mathematical reasons are discussed in the later Chapter 7.

3.1 Data model and structural manipulations
The data model for the legal values of program variables for the purpose of the reverse mode
is the set of all double numerical arrays plus struct and cell data structures. The associated
adjoint variables will always have the exact same structure, with the numerical arrays being
derivative classes in vector mode and double arrays in scalar mode. Accordingly all sorts of data

13

3. Adjoint code generator techniques

rearrangement and management such as creation of fields, cells, array reshaping and resizing are
also undone on the adjoint variables during the reverse sweep.

In the adjoint code generator we use the term storage expression to refer to subtrees of expres-
sions that denote struct, cell array, or array references. Each storage expression has a principal
variable, which is the variable in the workspace that holds the data structure (cf. Section 6.5.1).
Given that the data structure of program and adjoint variables are identical at any time, a storage
expression is differentiated by differentiating the principal variable only.

Thus, more generally speaking, storage expressions are handled by structural propagation, and
they differentiate to themselves. There is however one important exception to this rule: index
expressions with repeated indices require that we use arithmetic propagation for index expressions
instead, as described in the following Section 3.3.

Another closely related but mathematically entirely different question is the topic of complex
arithmetic and the automatic expasion from real to complex values, which occurs for example
when the square root of a negative value is computed. Here undoing the expansion at the point
of occurence would be the entirely wrong thing to do, cf. Section 3.5, and the later Chapter 7.

3.2 Binary scalar expansion
In the case of binary scalar expansion (BSX) we need special measures in the RM while the
semantics work out automatically in the FM. Basically, these special measures are a runtime
function which needs to be invoked on every binary operator. It has to check whether scalar
expansion has occured in the operation and when that is the case the adjoint in question has to
be summed to a scalar value, as described in [WBB12] and similar to what was done before for
the vector operations of Fortran95 [PH05].

3.2.1 Generalized binary scalar expansion

The builtin bsxfun is not supported by ADiMat yet. However, it is implemented as a method of
the derivative classes already, see Section 2.5, which is useful when handling the derivatives of the
legendre builtin, see Section 5.2.

3.2.2 Automatic generalized binary scalar expansion in Octave

In recent versions of Octave the expansion rules of bsxfun are active for all binary operators
automatically, which is called broadcasting [oct12]. This is an extension of the semantics of the
MATLAB language which is not as of yet followed by MathWorks MATLAB. It is also not sup-
ported by ADiMat yet.

3.3 Array selections: indexed expressions and assignments
Array reshaping (AR) may occur during an indexed assignment. Here MATLAB may fill a left
hand value with a right hand side of any shape, as long as the number of components is the same.
Array reshaping (AR) may also occur when an indexed expression is evaluated. Here, the resulting
shape may depend on the shape of the index array used, for example. In both cases this reshape
has to be undone, as described in [WBB12].

It was discovered relatively early that the proposed solution was not entirely correct, and
would not work in one quite particular instance, namely the repeated occurence of integer index
components. This is ultimately due to the fact that the semantics of array selections in the case
of repeated indices are somewhat different depending on whether the expression is on the LHS or
the RHS.

For example, consider the following statements in MATLAB:

x = 5 :8
x ([1 3 1])
x ([1 3 1]) = 1 :3

14

3. Adjoint code generator techniques

x =
5 6 7 8

ans =
5 7 5

x =
3 6 2 8

Now, when we use structural propagation on index expressions, an index expression will shift
from the LHS to the RHS of an assignment in the adjoint code and vice versa, and this will thus
fail in the case of repeated indices, due to the different semantics. While permutations and one-
to-one selections, including with logical indices, and also array reshapes and array enlargements
on the LHS are all covered by the old approach [WBB12], the adjoint code proposed there fails to
produce correct results whenever repeated indices occur.

So, again we need to take special measures in the reverse mode, while in the FM we can
just follow suit with with the same operations on the derivative, that is, the index operations
differentiate to themselves in the FM, even in the case of repeated indices. The new approach that
was found later is to set up the local Jacobians of the index operations, which are sparse logical
matrices, and multiply the adjoint with them, and so use arithmetic propagation as described in
Section 5.1.1. Note that this approach entails a reshape operation per se. Thus, in this case, we
can circumvent the peculiarity of having to invert some particular implicit behaviour in the adjoint
code by resorting to arithmetic propagration. The previous approach would have amounted to a
structural adjoint propagation as described in Section 5.1.2, which is what we usually do in the
case of structural manipulations as discussed in Section 3.1 and in particular storage expression as
discussed in Section 6.5. Given that arithmetic propagation is also by far the most efficient form
of propagation, as shown in Section 2.5, and given that the subsref and subsasgn methods of
the array-based derivative class are by far the most complex and the most involved ones, as shown
in Section 2.5, the new approach can be employed with advantage in performance everywhere,
that is, in FM as well and not just in the RM because it is unavoidable there. This is currently
implemented already in our R/ADR tool for the AD of the R language [Wil20b].

The partial derivatives of both indexed assignments and indexed expressions are computed
by setting up adjuvant objects, that is clones of the variables in question and performing a mock
execution of the operation in question. More precisely, for an indexed expressions x(i), we create
an adjuvant array X of the same size as x and fill it with the integers 1, 2, . . . , N , where N is
the number of elements in x. When we perform the mock evaluation of X(i) we see in the result
exactly which elements are selected. Similarly, for an indexed assignment x(i) = y, we create two
adjuvant arrays X and Y and fill X with zeros and Y with the integers 1, 2, . . . , N , where N is the
number of elements in y. When we perform the mock evaluation of X(i) = Y we see in the result
exactly which elements of X are overwritten by which elements of Y. In both cases this information
can be used to set up the sparse partial matrices efficiently using sparse. In the case of repeated
indices in i there will be columns with several non-zero entries or all-zero columns in the resulting
partial derivatives. The technique of adjuvant objects is also used in the differentiation of the
kron builtin in a slightly expanded form (cf. Section 5.3.4).

3.3.1 Multiple pairs of parentheses in expressions

In GNU Octave there is the syntactical extension that both function calls and index selections
may be repeated, that is, multiple pairs of parentheses may be appended where there are none
yet, as in x(1,2:3)(:) or find(x)(1), while in MATLAB proper there can by only one. This is
not supported by ADiMat.

3.4 Optimization
The many runtime functions to undo the implicit behaviour of many MATLAB operations are
relatively costly, in particular due to the interpreted nature of the MATLAB language. Hence

15

4. Efficient I/O for the reverse mode

each of these runtime functions can be omitted from the generated adjoint code. There is a group
option parameter well-behaved, which suppresses most of the additional code. In this mode the
adjoint code will look very similar as in the relevant literature [Gil08; GW08a]. This option is
useful for educational purposes but also for the performance. However this comes at the price of
the adjoint code being very brittle and allergic against the implicit behaviours mentioned. This
mode is used however for the runtime functions that are pre-generated by ADiMat, as described
in Section 5.1.3, i.e. the replacement functions are carefully written to be well-behaved.

These options to turn the aditional code on and off are implemented in a separate part of
the processing pipeline. This is easily possible due to the adjoint code being emitted in terms of
abstract code elements by the core adjoint code generator. Thus, the postprocessing step where the
abstract elements are devolved to regular AST elements is the natural point where these options
are implemented, as described in Section 6.5.3.

3.5 Complex expansion
There are many situations where MATLAB will implicitely expand the value of variables from
real to complex numbers. Contrary to the other situations of data type changes, such as BSX and
array selections, it is not correct to cast the adjoints from complex to reals in the corresponding
step of the program reversal. This means, the basic principle that the adjoint should mirror the
data type of the program variable is not true in this case. This is also contrary to the forward
mode in this case.

As a simple example consider a SLC program c → · · · → s → x → · · · → f computing an
analytical function f in a single scalar value c with one specific operation at one point x where
the value becomes complex. Necessarily the partial derivative of that step must be complex as
well. Hence, in FM the derivative will be complex from that point onward as well. In the RM
however, the adjoint may well be real all the way backwards from the end result f up to that
point, and only then become complex. It must necessarily be complex in all the steps before that
point. Hence, at none of the preceding steps we may legally cast the adjoint to a real value, for
example for the false reason that the corresponding program variables is real.

This case is mathematically quite interesting, and hence it will be discussed in more detail in
the later Chapter 7.

4 Efficient I/O for the reverse mode
The reverse reading of the stack in the reverse pass of the adjoint code is an interesting challenge
for the I/O subsystem of the OS.

The stack of the calculation for medium scale problems can easily reach sizes of several GB of
data. When this stack size becomes too large for the available RAM one option is to offload parts
of the data to secondary storage. Since the stack data is accessed solely in a LIFO fashion there
is ample opportunity to use asynchronous writes and prefetching to reduce I/O wait times.

On the application layer in ADiMat there are several variants of a single runtime function
adimat_store which each implement one form of stack. The default variant uses a persistent
cell array to keep the stack in memory.

Two other variants use asynchronous I/O available via the AIO API [Bha+03] and the MPI-IO
library [TGL02] which is part of MPI 2 and implemented in MPICH [GTL99], respectively. The
corresponding software layer which abstacts from these I/O layers and manages the prefetching is
called RIOS [WBMB15] and published as an open source software library [Wil13c].

With ADiMat we then implement a stack as a serialization layer for the basic MATLAB data
structures, and write the bytestream to disk with the RIOS library. For the stack mechanism to
work also in the forward-over-reverse Hessian mode the Taylor series objects (cf. Section 2.11)
have to be serialized to binary data as well.

In an experiment with a typical medium sized PDE solving the Burger’s equation the actual
I/O demand from the adjoint evaluation turned out to be not that large after all. The data

16

4. Efficient I/O for the reverse mode

rate was easily sustained by reasonably well-equipped I/O system with hard-disks. One obvious
thing to avoid are the synchronous writes of data, which are to be many asynchronous. Another
issue is appearently that reading a file blockwise backwards occurs a large penalty upon the read
operations. Here we devised a simple prefetching strategy that schedules the corresponding reads
with a given number of blocks in advance.

Altogether the results were very promising and even impressive. The runtime factor for the
computation of the gradient was recorded as well below 30, which is in our view a very good
mark considering the interpreted nature of the MATLAB language. The same problem written
in Fortran90 and differentiated with Tapenade [PH05] was able to achieve the typically really
impressive factors of about seven, when using the RIOS libary for the stack, which is really not
far from the theoretical optimum of about three [GW08a].

As for the performance of ADiMat we encounter here a similar effect that is frequently observed
with interpreted languages: Depending on the vector length of typical variables the runtime of
the code changes. For small vector length the code evaluation time is bound by the number of
language statements which each will typically require several thousand CPU cycles [Büs+14]. For
larger vector length the time is bound by the floating point performance of the machine. Hence it
is essential that problems are formulated in a vectorized fashion [HH16; Mat18].

In the interpreter bound regime the adjoint code of ADiMat performs not that well. The
runtime overhead can exceed the number of several hundred. This is reflective of the number
of lines of code in the runtime functions invoked by the code. Hence, in theses cases it may
be particularly effective to use the so called well-behaved mode of adjoint code, which omits a
considerable number of runtime operators, as described in Section 3.4.

However, the important thing to take away from our experiments with RIOS is that for a
vectorized numerical code the adjoint computation becomes feasible within the theoretical limits
when the vector length or problem size reaches a certain point, with an acceptable overhead due
to the code being MATLAB after all. The generated adjoint code is obviously just as vectorized
as the input code.

The message is that the performance of AD in MATLAB should always be evaluated at several
points with different problem sizes, making sure to obtain some data points in the interpreter
bound and some in the compute bound regime.

The overall important message regarding the runtime factor of the reverse mode is that a time
overhead in the asymptotic class of O(1), even though the hidden constant of the adjoint code
generated by ADiMat for MATLAB is horribly large at first sight, is qualitatively entirely different
from a time overhead of O(N), which is unavoidable with any forward method.

The need for an asynchronous stack may become more relative in the future, given that the
speed of memory is increasing relative to the speed of CPUs and FPUs. In fact Moore’s law
appears to have shifted its center of application, so to say, towards the width of the memory
busses and network interconnects nowadays, which means that the so called the memory gap is
closing very quickly currently [Kru16].

Thus the future development of compute technology looks likely to increase the availability
of fast and vast memory, and this means that, in a sense, time is working for the reverse mode.
However, the complexity of the compute hardware will probably still require a dedicated software
layer to handle the data movements.

Generally, offloading derivative computations to separate threads, is an idea that has been pro-
posed for AD before and remains to be explored to its full potential [Bis91; BGJ91; Ben96; Wal99;
BRV08]. Given that more and more interpreted languages support asynchronous operations, and
at the same time the so called global interpreter lock is being recognized as a bottleneck, it is
probably just a matter of time until a language suitable for high-performance numerical compu-
tation is equipped with efficient multithreading to achieve concurrent asynchronous operations on
the language level.

17

4. Efficient I/O for the reverse mode

4.1 Introduction
The last decade has witnessed a continuous growth in the development and use of mathematical
software for the automated evaluation of derivatives. The term automatic or algorithmic differenti-
ation (AD) [GW08a; Ked80; Ral81] refers to a set of techniques for transforming a given computer
program into another computer program capable of computing its derivatives exactly, i.e., up to
roundoff error. Software packages implementing these AD techniques are available for various pro-
gramming languages; see http://www.autodiff.org for a list of current AD tools. These tools
are used in a rich set of different scientific and engineering disciplines [Ber+96; Bis+08; Büc+05;
Cor+02; For+12; GC91].

The two most prominent AD techniques are called forward and reverse mode. By carrying
forward derivatives of intermediate variables with respect to input variables, the forward mode
(FM) follows the control flow of the original program. In the reverse mode (RM), in contrast,
the control flow of the original program is reversed. That is, the RM propagates derivatives of
output variables with respect to intermediate variables. FM and RM represent two ends of a broad
spectrum of algorithmic techniques [BH96; GW08a].

The focus of this article is on storage issues of the RM, a crucial aspect in most—if not all—
actual applications of AD tools to any real-world computer program of reasonable complexity. A
program generated by RM requires the storage and retrieval of potentially very large data sets.
The sheer size of the data generated when executing such a program may exceed the capacity
of the main memory within a runtime of a few seconds. Moreover, batch systems or computing
environments such as Matlab may also impose virtual memory limits that are smaller than the
actual main memory available. Hence, it is often unavoidable to store the data out of core, i.e.,
on some larger background storage via the file system, usually a hard disk or a large-scale storage
system on a compute cluster. However, while such background storage has a much larger capacity
than main memory, its access time is much slower than that to main memory. This is the reason
why the efficiency of storage and retrieval operations is typically the key factor of the performance
of RM-generated programs.

The new contribution of this article is the design, implementation, and evaluation of a soft-
ware architecture called Reverse mode I/O Stream (RIOS) that addresses these potential I/O
performance problems in the RM. The design goals of RIOS include

1. to provide large capacity background storage like hard disks while at the same time using
the full amount of the available main memory for caching,

2. to overlap the data I/O with computations and perform the I/O asynchronously in the
background while continuing with computations in the meantime,

3. to rearrange data accesses such that I/O is performed in blocks, and

4. to make available a mechanism allowing for efficient I/O in reverse direction.

The last item in this list is the major design goal. In the RM, we have the peculiarity that data is
extensively retrieved in reverse order of being stored. It has already been remarked in [Chr92] that
appropriate prefetching techniques could lead to a reduction of the overall RM overhead. There are
also techniques for reducing the amount of data that is written by the RM differentiation process.
While the basic approach of applying the RM to the whole program by storing all necessary
intermediate values is usually called store-all, the alternative is to differentiate only a part of the
program at a time, or, more generally, to recompute intermediate values. This is usually done
on the level of function calls [Nau08] or in for loops by a technique called binomial checkpointing
[GW00] and allows for a trade-off between storage and computation. Thus the amount of data to
be stored at any one time can be limited so that it fits into the main memory. However, it can
be challenging to achieve the right balance between storage and recomputation that fully exploits
the available main memory, especially when the amount of work in the parts of the program is
irregular. In these cases RIOS may help to smooth over the instances where data does have to
be written to disk with its use of asynchronous I/O. Furthermore, the checkpoints themselves

18

4. Efficient I/O for the reverse mode

also constitute data that is usually written to disk, and they are also accessed in reverse order of
being written, so they may themselves advantageously be written and read using RIOS. In these
respects, RIOS is orthogonal to the existing techniques, and attempts to make the RM of AD
more efficient by concentrating on the actual I/O, not withstanding that the user employs the
many existing techniques for efficient RM AD. To the best of our knowledge, there is currently no
AD tool with a particular emphasis on I/O, although for example the AD tool ADOL–C [GJU96]
performs I/O in blocks to write its data to disk, which already goes a long way to mitigate the
adverse effects of reading in reverse direction. Therefore, we direct our efforts into facilitating the
reading of a sequence of data items from background storage in reverse direction. This requires to
circumvent standard buffering techniques present in the C and C++ library and operating system
layers because, by default, they assume that sequential reading is carried out in the forward
direction. To prefetch data that is speculated to be needed in the near future, operating system
kernels and hardware often use read-ahead techniques. For the RM, however, reading in forward
direction may be harmful to the performance. It is therefore potentially advantageous to exploit
specific operating system features to optimise reading progress in reverse order. One such feature
to implement prefetching in reverse direction is the system function posix_fadvise. Since there
are many tweaking parameters and many popular file systems, it is reasonable to design RIOS
based on efficient large-scale I/O software libraries that already exist.

We accomplish our design goals by means of an abstract layer. More precisely, RIOS introduces
a custom stream buffer that can be used to form a standard C++ I/O stream. RIOS enables to
write to and read from this stream, possibly setting some options such as the amount of main
memory to be used. Experimental results reported at the end of this paper give evidence that
RIOS is useful for different AD tools. We also show the generality of RIOS by choosing AD
tools that support different flavours of programming languages. In particular, we demonstrate
its feasibility for the two AD tools Tapenade [HP04; HP13] and ADiMat [Bis+02]. Tapenade
implements the FM and RM via a source transformation approach. It is designed to transform
programs written in Fortran77 and Fortran 90 [PH05] as well as in C [PH08]. In contrast to these
strongly typed programming languages, ADiMat is an AD tool for Matlab, a dynamically typed
scripting language that is usually interpreted by an interactive environment. ADiMat is based on
a combination of source transformation and operator overloading and generates FM and RM code
[Veh09; WBB12] for programs written in Matlab and its dialect GNU Octave.

RIOS is not only relevant for these two specific AD tools. Its functionality may be beneficial
for any AD tool implementing the RM. RIOS might also be relevant for AD tools that implement
the FM as long as the implementation is based on program traces, also called tapes. AD tools
that fall into this class include ADOL–C [GJU96] and CppAD [BB08]. ADOL–C can write the
tape to disk using plain C file I/O in blocks and, thus, could benefit from RIOS’s capability of
handling I/O asynchronously. CppAD currently keeps the complete tape in main memory and/or
virtual memory. To overcome these space limitations, RIOS could here provide access to a larger
background storage.

This article is organised as follows. After a short description of related work in Section 4.2,
we present an example of a transformation carried out by the RM in Section 4.3. This example
illustrates the need for accessing data in reverse order and shows how stack operations come into
play. In Section 4.4, we discuss why standard I/O facilities are not adequate for implementing a
large-scale stack on background storage to be used for the RM. In Section 4.5, we describe RIOS,
a custom stream buffer with a peculiar buffering strategy tailored for the RM. In Section 4.6,
we present some performance results for two test cases, an artificially constructed example with
a rather typical access pattern for the RM and another example from the solution of a partial
differential equation. Concluding remarks are given in Section 4.7.

4.2 Related work on I/O in high-performance computing
The bottleneck of data I/O to and from large capacity storage systems has been a subject of
intense research for quite some time. The survey [GVW96] identifies four basic techniques for
the solution of I/O performance problems: exploiting caching and data locality, overlapping I/O

19

4. Efficient I/O for the reverse mode

with computations, reducing or rearranging data accesses, and exploiting device parallelism. As
already indicated in the previous section, RIOS broadly covers the first three categories while it
does not directly target the fourth category. However, exploitation of device parallelism could
be included to RIOS as well, for example by using a striped RAID file system or by running the
AD-generated code in parallel on several machines.

Our work is related to various aspects of I/O in high-performance computing (HPC). In par-
ticular, there is a connection to prefetching techniques, for example the work on pre-execution
prefetching [Che+08] or on using Markov models for data access prediction [Che09]. The differ-
ence to our work is that we have only sequential and, in particular, reverse sequential accesses.
Reverse sequential accesses are not uncommon in HPC applications [Pur+95] and there is explicit
support for reverse sequential reading in GPFS [SH02] and also in the MPI-IO part of MPI-2
[For09] via the hints mechanism. Specifically, in MPI-IO there is the file hint access_style, which
can be given the value of reverse_sequential [For09]. However, it is difficult to find information on
what is actually done to implement these features or what performance they achieve. For instance,
using the hints mechanism in MPI-IO, a file can be given only one type of access pattern which
seems to force us to close and reopen the file whenever switching between write and (reverse) read
phases. One empirical work where reverse sequential reads are explicitly considered is DiskSeen
[Din+07]. We believe that the particular use case of I/O for the stacks in the RM might in fact be
an interesting test case for these prediction-based approaches or other self-optimizing I/O suites
[Wie+13]. The reason is as follows: While, conceptually, the data is read in reverse direction, in
practice this consists of several read operations on smaller pieces of data, which are performed
by standard read primitives, and thus in forward direction. So, when the size of these reads
varies, prediction-based techniques will face certain challenges to determine whether reading goes
in forward or reverse direction, probably resulting in the need to set some parameters such as the
history window size a priori.

The ADIOS interface [Lof+08] is also related to our work. It allows for abstractions from
the particular I/O methods selected via configuration files. This system makes possible to switch
from, say, POSIX I/O to HDF5 or MPI-IO without recompiling. It is similar to our approach in
that RIOS also provides different stream implementations depending on certain user options. An
extension of ADIOS, called CIAO, introduced in the context of energy efficiency [Kun+12] allows
to label specific regions of an application program with a particular name. These named regions
can be expected to use similar I/O patterns and their behaviour is analysed by the CIAO library.
This feature could be relevant for the RM since a code generated by the RM consists of two clearly
defined parts. The first part consists of storing data to background storage in forward direction
while the second part requires to access data from background storage in reverse direction. This
is detailed in the following section.

4.3 The need for accessing data in reverse order

The RM requires the storage and restoration of the intermediate values of program variables and
the reversal of the control flow of the program. This is done by generating appropriately augmented
source code. This augmented code consists of two parts, the so-called forward sweep and the reverse
sweep. Notice that the forward sweep of the RM is different from the FM. The forward sweep of
the RM is basically the original source code, but it is augmented by store operations that save
any information required during the reverse sweep. Required information includes the values of
variables that are needed to evaluate the partial derivatives of elementary operations, but may
also include other variable values such as array indices. Determining the minimal set of variable
values to be recorded is described in [HNP05].

The reverse sweep contains the so-called adjoint statements that are responsible for accu-
mulating the derivatives in the adjoint variables. For example, consider a statement sequence
y ← f(x); z ← g(x, y), where x is the input variable, z the result, and f and g are elementary
operations of the programming language. Each statement in the original code induces a num-
ber of adjoint statements. These are x ← x + ∂g

∂xz; y ← y + ∂g
∂y z for the second statement and

20

4. Efficient I/O for the reverse mode

x ← x + ∂f
∂y y for the first, where x denotes the adjoint variable associated with x. All adjoint

variables are initialised to zero, except the adjoint variable associated with the result which is
initialised by z = dz

dz = 1. The adjoint statements must be executed in the reverse order of the
original statements. The result of the derivative propagation is then available in the adjoint vari-
able associated with the input variable, in the example x = dz

dx . Hence in the reverse sweep, all
control flow structures are reversed as well. In particular, loop iterations have to be run in reverse
order, unless the order of loop iterations is arbitrary, i.e., the loop is parallelisable. Also, any
branch taken in an if statement has to be remembered. The adjoint statements will also generally
require the values of program variables on the right-hand side of the original program statement
at the time when this original statement was executed. These values are needed for evaluating
the partial derivatives of the elementary operations in the adjoint statement. One solution to this
problem is to store the value of all variables before they are overwritten. Since the data items
stored during the forward sweep will be required in reverse order during the reverse sweep, the
natural data structure to store this information is a stack. Push operations are inserted into the
forward sweep code for storing information and pop operations in the reverse sweep retrieve it.

The following example illustrates the program transformation carried out in the RM. Consider
the Matlab function shown in Listing 1. This function computes the scalar value

z =
k−1∑
i=0

pi x
i (1)

of a polynomial defined by the vector of its coefficients p = (pk−1, pk−2, . . . , p0) at a given scalar
point x.

1 function z = polynom (x , p)
2 k = length (p) ;
3 z = p (1) .∗ x ;
4 for i =2:k−1
5 z = (z + p(i)) .∗ x ;
6 end
7 z = z + p(k) ;

Listing 1: A Matlab function evaluating a polynomial using the Horner scheme.

The result of transforming this code by ADiMat in the RM is shown in Listing 2. For the
sake of clarity, this adjoint code is a simplified version obtained by setting certain ADiMat options
to non-default values. In particular, the wrapper function calls which are necessary for undoing
implicit shape changes [WBB12] are omitted here.

Compared to the function signature of the original code given in Listing 1, the function signa-
ture of the RM-generated code depicted in Listing 2 is augmented with the adjoint input parameter
a_z and the adjoint return parameters a_x and a_p. The function body consists of the forward
sweep in lines 2–14, followed by the initialisation of the adjoint variables with a_zeros in line 15,
and the reverse sweep in lines 16–34. The forward sweep code is basically the original code un-
changed, except that push operations are inserted and nested expressions are broken up. This is
done by a preprocessing step called outlining, which introduces temporary variables with prefix
ca or fra. The function a_zeros creates zero adjoint objects. In this example, we are interested
in differentiating a scalar-valued function, see (1). Here, an adjoint object created by a_zeros(p)
is a zero array of the same size and shape as p. The for loop in the reverse sweep has an iteration
range given by the builtin function fliplr applied to the original iteration range. The builtin fliplr
reverses the order of the items of a row vector and has exactly the desired effect of reversing the
order of iterations.

1 function [a_x a_p nr_z] = a_polynom(x , p , a_z)
2 ca1 = 0 ;
3 k = length (p) ;
4 z = p (1) .∗ x ;

21

4. Efficient I/O for the reverse mode

5 fra1_2 = k − 1 ;
6 for i=2 : fra1_2
7 push(ca1) ;
8 ca1 = z + p(i) ;
9 push(z) ;
10 z = ca1 .∗ x ;
11 end
12 push(fra1_2 , z) ;
13 z = z + p(k) ;
14 nr_z = z ;
15 [a_ca1 a_x a_p] = a_zeros (ca1 , x , p) ;
16 z = pop ;
17 a_p(k) = a_p(k) + a_z ;
18 sa1 = a_z ;
19 a_z = a_zeros (z) ;
20 a_z = a_z + sa1 ;
21 fra1_2 = pop ;
22 for i=f l i p l r (2 : fra1_2)
23 z = pop ;
24 a_ca1 = a_ca1 + a_z .∗ x ;
25 a_x = a_x + ca1 .∗ a_z ;
26 a_z = a_zeros (z) ;
27 ca1 = pop ;
28 a_z = a_z + a_ca1 ;
29 a_p(i) = a_p(i) + a_ca1 ;
30 a_ca1 = a_zeros (ca1) ;
31 end
32 a_p(1) = a_p(1) + a_z .∗ x ;
33 a_x = a_x + p (1) .∗ a_z ;
34 end

Listing 2: The Matlab function obtained from transforming Listing 1 by ADiMat in RM.

To evaluate the polynomial (1) with k = 5 and coefficient vector p = (1, 1, 1, 1, 1) at x = 2 we
execute

z = polynom (2 , [1 1 1 1 1]) ;

in the Matlab interpreter. The derivatives of (1) with respect to x and p are given by

dz
dx =

k−1∑
i=0

ipi x
i−1 and dz

dp = (xk−1, xk−1, . . . , x0). (2)

Invoking the adjoint function from Listing 2 in the Matlab interpreter at the same point x via

[a_x a_p z] = a_polynom (2 , [1 1 1 1 1] , 1) ;

computes these derivatives in the variables a_x and a_p, respectively. Here, the adjoint input
parameter, a_z, associated to the function result z is set to a scalar one. In addition to the
derivatives, the adjoint function also returns the polynomial value z. The analytic results (2) are
easily verified as follows. By observing that dz/dx =

∑k−2
i=0 (i+ 1)pi+1 x

i and since the coefficients
satisfy pi = 1 for all i, we obtain this derivative by evaluating, at the same point x = 2, a
polynomial whose degree is reduced by one and whose coefficients are linearly decreasing. That
is, the value computed by

dzdx = polynom (2 , [4 3 2 1]) ;

22

4. Efficient I/O for the reverse mode

coincides with the value of a_x computed above by the adjoint code. From (2), the entries of the
vector dz/dp are given by the powers of two which are computed in a_p.

Note that the RM code shown is constructed in the store-all fashion of the reverse mode, that
is, all necessary intermediate results are stored on the stack.

4.4 An interface between RIOS and automatic differentiation tools
The code generated by the RM of an AD tool will typically contain many push and pop opera-
tions. Depending on the particular strategy of an AD tool, this code can also involve some form of
recomputation for certain parts of the code. A clever combination of recomputation and push/pop
operations can lead to efficient RM-generated code in practice. However, rather than considering
such a combined strategy, the focus of this article is on push/pop operations that typically domi-
nate the overall performance. In this section, we describe the RIOS interfaces of these push/pop
operations. We show how these operations can be mapped to write and read operations on files,
by virtue of the serialisation of the variable values to be stored. We take codes generated by
Tapenade and ADiMat as illustrating examples for multifaceted AD tools. For small data, current
AD tools offer various in-memory solutions. However, to achieve scalability for large quantities of
data, a new approach is necessary that uses files on some background storage efficiently.

4.4.1 Stack interfaces in Tapenade

The RM code generated by Tapenade contains calls to various functions for storing and retrieving
data from a stack. Examples include pushreal8, popreal8, pushreal8array, and popreal8array. The
file adStack.c of the Tapenade distribution implements these functions in C. All of these functions
receive as parameters a pointer to an array of the respective data type and an integer indicating
the size of the array being stored or retrieved. They are ultimately mapped to the two functions
shown in Listing 3, which requires just a multiplication of the array size by the byte size of the
data type, e.g. pushreal8(v, n) calls pushNarray(v, n*8).

1 void pushNarray (char ∗x , unsigned int nbChars) ;
2 void popNarray (char ∗x , unsigned int nbChars) ;

Listing 3: The basic push and pop functions used by Tapenade.

The function pushNarray writes nbChars bytes of data, while popNarray reads back the
nbChars bytes that were last written, i.e., the functions work according to the usual stack se-
mantics. We shall see in the next section that these two functions ultimately define the RIOS
interface to the AD codes, in both Fortran and Matlab. In Tapenade’s default implementation
found in adStack.c, these functions use a doubly linked list of memory blocks of a fixed size, by
default 16 kB, to store the data.

4.4.2 Stack interfaces in ADiMat

The runtime environment of ADiMat contains two basic functions for storing and retrieving values
on a stack. The function push stores its arguments in left-to-right order on the stack. That is,
push(a, b); is equivalent to push(a); push(b). Any number of arguments can by given to push
because it uses Matlab’s special formal parameter varargin. The function pop retrieves as many
items from the stack as there are output arguments in the call. In Matlab, a function can return
any number of results. The special formal output parameter varargout is used to specify that this
number can be variable. For example, an invocation like a = pop() invokes pop with one output
argument, as does [a] = pop(). The statement [b a] = pop() invokes pop with two output
arguments, and so on. Inside the function, the builtin nargout is used to determine the number
of outputs requested. The items retrieved from the stack are placed in the output arguments in
left-to-right order. That is, [b a] = pop(); is equivalent to b = pop(); a = pop().

The functions push and pop themselves call a function store with the two arguments mode
and obj. If the integer mode is 0 then the function store retrieves one item from the stack. When

23

4. Efficient I/O for the reverse mode

mode is 1, then the value obj which can be of any kind is pushed on the stack. There are several
different versions of the store function, as shown in Figure 3. We call one such implementation
of the store function a stack. The following stacks are available in ADiMat; all but the first are
implemented as extension functions written in C/C++, which are called MEX-functions.

• native-cell: This stack is implemented as an m-file that uses a cell array in a persistent
variable to store the items on the stack. Thus, data remains in main memory and inside the
workspace of the function store.

• mem: This stack is implemented as a MEX-function. The MEX-API functions are used to
obtain the pushed object’s data, which is stored in main memory in a linked list. However,
this requires that we take a copy of the object’s data.

• sstream: This stack is also implemented as a MEX-function which serialises the data as
described below. The resulting byte stream is written to an std::stringstream, and thus still
remains in main memory.

• fstream: This stack is identical to sstream except that an std::fstream object is used to
store the data on disk.

• abuffered-file: These stacks are identical to sstream and fstream, except that an
std::iostream object with a custom streambuffer, as described in Section 4.5, is used to store
the data on disk. We design several different streambuffers, for example using the standard
I/O functions of C (StreambufCFile), those of the Windows API (StreambufWinFile) and
finally the one that we mainly present here, StreambufBlocker, which in turn uses various
library routines for asynchronous I/O.

Each stack resides in a different directory and the function adimat_stack can be used to
manipulate the search path in Matlab so that one or the other version is found and used. The
last two stacks are capable of writing the data to hard disk. Though all these stacks are used in
the numerical experiments, the focus of this article is on the stack abuffered-file.

In Matlab variables may not only hold numerical arrays but also struct arrays, cell arrays or
other objects. We use a serialisation software layer, shown as class Serialiser in Figure 3, that can
convert objects of any of the builtin classes of Matlab, including cell arrays and struct arrays, to a
byte stream. Objects of user-defined classes can be serialised if they support conversion from and
to structs. The byte data that comes out of the serialisation layer is written and read using the
functions pushNarray and popNarray shown in Listing 3. Thus, the serialisation layer provides
a mapping from the high-level push and pop functions in Matlab to the byte-wise interface in
Listing 3.

The serialisation layer will in general perform several low-level operations when a single item is
serialised or deserialised. For example, when a double array is pushed, the serialiser will first push
the array data on the low-level stack. Then, the vector of array dimensions is pushed, then the
number of dimensions, and finally an ID code indicating the type “double array”. The deserialiser
will first retrieve the ID code from the low-level stack. Then it knows that there are three more
items to fetch. After fetching the second item, the number of dimensions, it knows the length
of the third item, the vector of array dimensions. Now it can calculate the length of the actual
array data. Note that this already indicates the necessity for an intermediate layer handling IO in
blocks to buffer the reads of small amounts of data from the stack. This turns out to be important
later to understand why the standard I/O facilities are unsuitable for our needs. One possible
approach which is orthogonal to the work proposed in this note is to split the serialisation data
into several streams, using one stream for each of the four categories of data items mentioned
above, thus creating three control data and one value data stream. This is already implemented in
the serialisation layer used by ADiMat and can alleviate the problems created from mixing large
and small writes.

All of the C++-based stacks are also available for Octave, as so-called oct-functions, which cor-
respond to the MEX-functions of Matlab. Note that everything downward from the std::iostream
can be used identically in Octave and Matlab. Basically only the serialisation layers are different.

24

4. Efficient I/O for the reverse mode

«interface»
push/pop

+ push(obj : value)
+ pop() : value

«interface»
store

+ store(mode : integer, obj : value)

Matlab Pathresolver
+ addpath(dir : string)
+ rmpath(dir : string)

std::fstream std::iostreamstd::sstream

«interface»
std::streambuf
+ xsputn()
+ xsgetn()
+ overflow()
+ underflow()
+ sync()
+ seekoff()
+ seekpos()
+ gptr()
+ egptr()
+ gbump()
+ pptr()
+ pbase()
+ pbump()
+ setp()
+ setg()

std::stringbuf std::filebuf

sstream/store.mexa64 abuffered-file/store.mexa64

native-cell/store.m

Serialiser

StreambufCFile
+ overflow()
+ underflow()
+ seekoff()
+ seekpos()
+ xsgetn()
+ xsputn()

StreambufWinFile
+ overflow()
+ underflow()
+ seekoff()
+ seekpos()
+ xsgetn()
+ xsputn()

StreambufBlocker
+ overflow()
+ underflow()
+ seekoff()
+ seekpos()
+ xsgetn()
+ xsputn()

mem/store.mexa64

fstream/store.mexa64

Figure 3: Class diagram of the infrastructure behind ADiMat’s push and pop functions.

4.4.3 Common backend for ADiMat and Tapenade stacks

Next, we discuss how to implement the interface of Listing 3 such that the data can be offloaded
to background storage. To this end, we consider std::iostream objects from the C++ I/O library.
Objects implementing the interface std::iostream have the following methods that we need:

1 basic_ostream& wr i t e (const char_type∗ s , s td : : s t r eams i z e count) ;
2 bas ic_istream& read (char_type∗ s , s td : : s t r eams i z e count) ;
3 bas ic_istream& seekg (pos_type pos) ;

Listing 4: Methods from the iostream interface.

Calls to pushNarray can be directly mapped to a call to the iostream::write method. This will
append the count bytes after the current stream position and also advance the stream position
by count bytes. Hence, a following call to pushNarray will append the data after that and so
on. A corresponding sequence of popNarray operations will have to retrieve the data in reverse
order. The sequence of operations to retrieve a single item of n bytes, which we call a reverse
read operation, is shown in Listing 5. First the stream position is moved backwards by n bytes,
by calling the seekg method, then the n bytes of data are read, and finally the stream position is
moved back again in order to leave it at the correct location for the following stack operation, be
it another pop or a push1.

1 s . seekg(−n , std : : i o s : : cur) ;
2 s . read (data , n) ;

1The std::iostream methods allow for two independent stream position pointers, a get pointer and a put pointer.
Here, we assume that they are synchronised (std::fstream) or we synchronise them manually (std::stringstream).

25

4. Efficient I/O for the reverse mode

3 s . seekg(−n , std : : i o s : : cur) ;
Listing 5: The basic reverse read operation in C++.

The same kind of operation can also be done with the C I/O interface. The functions that are
needed here are fseek and fread, as shown in Listing 6.

1 f s e e k (f i l e , −n , SEEK_CUR) ;
2 f r ead (data , n , 1 , f i l e) ;
3 f s e e k (f i l e , −n , SEEK_CUR) ;

Listing 6: The basic reverse read operation in C.

Using the C++ iostream interface has two advantages: Firstly, we can readily use the two
different I/O stream implementations provided by the C++ I/O library. For the stack fstream,
we use std::fstream representing a file on disk, while for the stack sstream we use std::stringstream
representing a memory buffer. Secondly, it is possible to create I/O streams with customised
behaviour, which is what we do for the stack abuffered-sstream and what is explained in more
detail in the following sections.

4.5 RIOS: A custom stream buffer for reverse reading
In this section we briefly summarise the facilities for file I/O in both C and C++. Then we
analyse the buffering strategies employed by these two different I/O layers, for the case of the GCC
compiler and its associated libraries. This analysis will show that the existing file I/O facilities
in both C and C++ are unsuitable for backwards reading of large-scale data. In particular, their
performance turns out to be low when mixing reverse reads to large and small data. Hence, we
propose and implement the novel RIOS software for a special I/O layer adapted to reverse reading
to be used as the backend of an RM stack2.

4.5.1 File I/O facilities in C and C++

Let us first recapitulate the facilities for file I/O available in C and C++. In C, there is the opaque
FILE data type with which library functions like fopen, fclose, fread, fwrite, fseek, ftell, and fflush
are associated.

The C++ I/O library provides the std::iostream object and two derived classes: Objects of
type std::stringstream and objects of type std::fstream. Objects of type std::iostream can also be
constructed themselves. The corresponding constructor requires as argument a pointer to a so-
called stream buffer, as shown in Listing 7. A stream buffer is an object of the class std::streambuf
or a derived class.

1 std : : streambuf ∗ s = . . . ;
2 std : : ios t ream myStream(s) ;

Listing 7: Constructing std::iostream objects with a particular stream buffer.

The idea behind separating the stream buffers from the I/O stream classes is that all the
formatting functionality is kept in the I/O stream class and its overloaded operators, most notably
the operator <<. On the other hand, the stream buffer is concerned only about reading or writing
character sequences. The underlying stream buffer of std::stringstream is std::stringbuf which
keeps data in main memory. The underlying stream buffer of std::fstream is std::filebuf which
represents a file on disk. Implementing other stream buffers with a particular behaviour allows
for the creation of I/O streams for special purposes as per Listing 7, and we capitalise on this
option. In the following section we detail the different I/O stream variants that are part of RIOS.
When using the ADiMat stack abuffered-file, the desired RIOS stream can be specified using
the function adimat_stack_async_io_type.

2Download RIOS from http://rios.ourproject.org/

26

http://rios.ourproject.org/

4. Efficient I/O for the reverse mode

4.5.2 Buffering strategies of file I/O in C

File I/O in C employs a memory buffer with a default size in bytes given by the constant BUFSIZ,
with a current value of 8192. The function setvbuf can be used to set this value to a different
size b. The following description of the buffering strategy assumes that the size of the buffer is a
power of two.

We can understand the buffering strategy by looking at the system calls (read and lseek)
issued by a program doing a series of reverse reads of a fixed size n using the C library functions,
as shown in Listing 6. In our case, we look at the current GNU libc version 2.13. Apparently,
the buffer is aligned with file offsets which are multiples of b. Thus we can imagine the file as a
sequence of aligned blocks of size b. Assume that the file pointer is at some offset p, then a reverse
read of n bytes will move it to offset p′ = p− n. When both p and p′ are within the same aligned
block, the reverse read of n < b bytes can be satisfied entirely from the buffer, and no system read
occurs. This situation is depicted in Figures 4 (a) to (c).

Now, consider a reverse read that crosses an aligned block boundary where p′ < i · b < p for
some i, as depicted in Figures 4 (d) to (f). Upon the first backwards fseek, the C library will
lseek backwards to the next lowest multiple of b, i.e., to offset (i−1) · b, and then perform a read
of b bytes, in order to fill the buffer with the data of the aligned block i−1, in which p′ lies. Then,
the fread operation can only be partially satisfied from the buffer, because the part between i · b
and p is not in the buffer any more. Hence, a second read occurs, to load block i again. The final
backwards fseek makes the C library lseek backwards to offset (i − 1) · b again and, once more,
read block i− 1 to again fill the buffer with that block.

Now, consider a series of reverse reads of size n that read back an entire file. We discuss the
following two extreme cases. If the size of the data being read is much larger than the buffer size,
n � b, then the proportion of data that is read repeatedly and redundantly is small. However,
the benefit of using such a small buffer is also small. In the second case where the buffer is large,
n� b, each aligned block i will effectively be read three times: Two times when a series of reverse
read crosses the upper boundary (i+ 1) · b of the block, and once more, when the series of reverse
reads crosses the lower boundary i ·b of the block. From these two extreme cases, we conclude that
it does not help to use a large buffer, unless the programmer actively avoids that reverse reads
cross buffer boundaries, while using a small buffer obviously forfeits the advantage of buffering.

27

4. Efficient I/O for the reverse mode

Figure 4: The effect of the buffering strategy of the GNU C library version 2.13 on a reverse read
operation, cf. Listing 6. Sub figures (a)–(c): When a reverse read falls between two alignment
boundaries, the read can be satisfied from the buffer. Sub figures (d)–(f): When a reverse read
crosses an alignment boundary, like i · b here, three system reads occur.

4.5.3 Buffering strategies of file I/O in C++

Figure 5: The effect of the buffering strategy of the GNU C++ I/O library on a reverse read
operation; cf. Listing 5. The buffer offset blow is always aligned with the read offset p′ and hence
for every reverse read of n bytes there is a system read of at least b bytes.

File I/O in C++ via the std::fstream and std::filebuf objects is buffered with a memory buffer
which also has a size of BUFSIZ bytes by default. It is also possible to set a user defined buffer
using the method pubsetbuf of std::filebuf. Interestingly, the buffering strategy of std::filebuf in the
GCC implementation appears to be fundamentally different from that of C-style file I/O, as we see
by looking at the output of the strace utility. When doing a reverse read, the new stream position
p′ is generally before the lower end blow of the current buffer. This lower end is then realigned

28

4. Efficient I/O for the reverse mode

with p′ and then the maximum of n and b bytes will be read. This is depicted in Figure 5. Now,
as with every reverse read the stream position moves backwards by n, so does the beginning of
the buffer blow. So, when using a large buffer with b � n, each read operation will load b bytes
into the buffer, because the I/O stream assumes that data will continue to be read in forward
direction. For this reason using a large buffer for reverse reads is completely counterproductive.
The buffer will be redundantly filled with—in this case useless—data over and over again. The
larger the buffer size, the worse this effect: Each byte of data is read b/n times.

4.5.4 Design and implementation of custom stream buffers

We first give a general overview of our design goals for a custom stream buffer. In Figure 6 we
show a UML activity diagram of a write operation. This diagram shows that we can broadly
separate the actions into three layers. At the very top of the diagram, the initial action is labelled
as “Write n bytes”. This is what comes out of the serialisation layer and represents a call to the
function pushNarray. First we can decide whether to use a custom buffering strategy or not. This
amounts to using the predefined I/O stream std::fstream or maybe a stream buffer which uses the
C I/O interface on one hand, or a stream buffer with a custom buffering strategy on the other
hand. This is the layer labelled stream buffer in Figure 6. The next question is what we do when a
buffer is full. Obviously we have to write the b bytes it contains to disk somehow, and return a free
buffer to the upper layer, but we could use just one buffer or several. Therefore, there is a second
layer that is labelled block sink/source in Figure 6. We might also call it “buffer management”.
Finally there is a third layer that is responsible for performing asynchronous I/O operations as
they are indicated by the small concurrent section in the right part of Figure 6. Obviously, using
multiple buffers does only make sense when asynchronous I/O is used, and vice versa. So, the
separation between the second and third layer is not cleanly possible in this diagram. However,
the third layer is useful for abstracting from the different sets of asynchronous I/O routines that
are available.

Figure 6: Streambuffer activity diagram.

The separation between I/O streams and stream buffers in C++ exists to provide the concept
of a so-called controlled sequence that represents a window into the whole data stream, the so-
called associated sequence. Usually the controlled sequence is a memory buffer. The associated
sequence may be yet another std::iostream, or a plain C file, a data base or possibly even a tape
reader. The C++ I/O library is a rather complex topic, cf. [LK08], so we briefly introduce only

29

4. Efficient I/O for the reverse mode

issues pertinent to our work. In the following, we call the associated sequence the file and the
controlled sequence the buffer.

The std::streambuf class has a set of virtual functions that can be overwritten in order to
implement the desired features. The methods that usually are reimplemented in a derived class
are shown in Listing 8.

1 int_type sync () ;
2 int_type over f l ow (int_type) ;
3 int_type underf low () ;
4 std : : s t r eams i z e xsgetn (char ∗ s , s td : : s t r eams i z e n) ;
5 std : : s t r eams i z e xsputn (char const ∗ s , s td : : s t r eams i z e n) ;
6 pos_type s e e k o f f (o f f_type o f f , s td : : ios_base : : s e e kd i r way ,
7 std : : ios_base : : openmode which) ;
8 pos_type seekpos (pos_type const sp , std : : ios_base : : openmode) ;

Listing 8: Some important virtual methods of a stream buffer class.

The two methods xsputn and xsgetn are eventually called by the iostream object in order to
read or write some byte data. The method xsputn handles the insertion of n bytes at the current
position. This function will usually fill the internal buffer with the data, and when the buffer is
full, it may call overflow in order to flush the buffer to the backend and thus create new space
for more data. Likewise, xsgetn is the method for reading data. It copies data from the internal
buffer to the output pointer and probably calls underflow when the buffer is empty to read more
data from the backend file. The methods seekoff and seekpos are used to position the file get and
put pointers. These methods are necessary to implement seeking in the iostream via its seekg and
seekp methods, but seekoff is also called in order to obtain the current file position.

Note that it is not necessary to overwrite all of these methods. A very simple streambuffer
for writing data to a particular backend may, for example, be implemented by just overwriting
overflow. There is a default xsputn which will call overflow for every single character. Similarly,
when one does not implement seekpos and seekoff, one may not inquire or change the stream
position, and thus one obtains a non-seekable I/O stream, which might be useful for I/O to a
network or a data base.

Figure 7 shows a UML class diagram of the stream buffers that we designed. Let us consider
two examples occurring in that diagram. As a first example, consider the class StreambufCFile
which is simple. It uses a plain file from the C library as a backend. It maps the functions given in
Listing 8 to those mentioned in Section 4.5.1 as follows. The function xsputn is mapped to fwrite,
xsgetn to fread, sync to fflush and seekoff and seekpos are implemented via fseek and ftell. The
overflow and underflow methods are not needed in this case. This streambuffer will not implement
buffering by itself. This allows for a direct mapping of operations on an I/O stream to C-style file
operations, which is an interesting test case for comparison, and, as we will see, may even perform
more efficiently in our usage scenario than a standard fstream from the C++ library.

As the second example, consider the class StreambufWinFile which uses the file I/O functions
from the Windows API. It is interesting to note that these are asynchronous by default, but of
course we cannot make use of that in the simple wrapper class StreambufWinFile. However, as
discussed in the next section, when we use a buffering intermediate layer, then we can exploit
these asynchronous functions by using them to implement the third layer, which is shown as the
class AsyncIO_Win in Figure 7.

4.5.5 Architecture and buffering strategy of a special-purpose stream buffer for re-
verse reading

As we mentioned already in the previous section, we separate the design of our custom stream
buffer into three layers: stream buffer, block sink/source, and asynchronous I/O. On the first
layer, we have the actual stream buffer, which is shown as class StreambufBlocker in Figure 7. It
implements what we call a block forming mechanism. The idea is that it aggregates the operations
on data of variable length n into data blocks of a fixed size b. This mechanism reads or writes

30

4. Efficient I/O for the reverse mode

MPICH2

«interface»
BlockSinkSource
+ getFreeBlock()
+ writeBlock()
+ readBlock()
+ preReadBlock()

BlockSinkSourceFiles

StreambufCFile
+ xsputn()
+ xsgetn()
+ seekpos()
+ seekoff()
+ overflow()
+ unterflow()

BlockSinkSourceAsyncIO
+ returnFinishedBuffers()
+ getUnusedBuffer()
+ waitForOneBuffer()
+ findBlockWithData()

«interface»
AsynchronousIO
+ wait()
+ waitany()
+ waitall()
+ waitsome()
+ iread()
+ iwrite()
+ read()
+ cancel()

AsyncIO_AIO AsyncIO_MPIO

SyncIO

SyncIO_OSHints

StreambufBlocker
+ xsputn()
+ xsgetn()
+ seekpos()
+ seekoff()
+ overflow()
+ unterflow()

«interface»
MPICH2::MPI-IO

+ MPI_File_iwrite_at()
+ MPI_File_iread_at()
+ MPI_File_read_at()
+ MPI_Wait()
+ MPI_Waitall()
+ MPI_Waitsome()

«interface»
AIO

+ aio_read()
+ aio_write()
+ aio_supend()
+ aio_cancel()
+ aio_error()
+ aio_return()

«interface»
POSIX

+ posix_fadvise()

«interface»
SVr4

+ read()
+ write()
+ lseek()

«interface»
std::basic_streambuf
+ xsputn()
+ xsgetn()
+ seekpos()
+ seekoff()
+ overflow()
+ unterflow()

«interface»
C89

+ fread()
+ write()
+ lseek()

StreambufWinFile
+ xsputn()
+ xsgetn()
+ seekpos()
+ seekoff()
+ overflow()
+ unterflow()

«interface»
WinAPI

+ ReadFileEx()
+ WriteFileEx()

std::iostream
+ read()
+ write()
+ seekg()
+ seekp()
+ tellg()
+ tellp()

AsyncIO_Win

system interfaces

m_asyncIO

1 1

+m_blockSinkSource

Figure 7: Class diagram of the custom stream buffer.

these blocks from or to the next layer, which is the middle layer, which we therefore call block
sink/source. This middle layer is represented by the interface BlockSinkSource in Figure 7. Its
main implementation is the class BlockSinkSourceAsyncIO, which is responsible for managing a
set of M memory buffer blocks. The size of one of these data blocks of the top layer is given by
b. Using multiple buffers is what actually allows for the use of asynchronous I/O operations on
the bottom layer. At any one time, one buffer block is the active one from which the current read
and write requests are satisfied. The others may hold data that is being written or being read
asynchronously. The actual I/O operations are on the bottom layer, represented by the interface
AsynchronousIO. We implement several variants of this layer for the different I/O functions and
libraries that we wish to use. In particular, we will implement this layer by using the POSIX
asynchronous I/O (AIO) interface or by using the asynchronous I/O capabilities built into MPI 2,
namely those of the MPICH2 implementation. As already mentioned, we can also use the Windows
API and, as a test case, even the basic blocking system calls of UNIX.

The buffering strategy we wish to implement is the following: During write phases, full buffer
blocks are written away by asynchronous write operations. When all buffer blocks are full, we
wait for the first of these operations to complete in order to gain a free buffer block. Then, when
a phase of reverse reads begins, the first M − 1 data blocks that are required will still be loaded
in buffer blocks, possibly with pending write operations. To also make use of asynchronous read
operations, we define a prefetch amount P < M . Upon accessing a data block i, we will issue
asynchronous read requests for the data blocks i−1, i−2, . . . , i−P unless these are already present
in a buffer block.

StreambufBlocker, a block forming streambuffer At the top level of a software stack for
asynchronous I/O via C++ streams, we implement a block forming stream buffer, in a class called
StreambufBlocker. This stream buffer implements the methods listed in Listing 8 and uses a
memory buffer of size b for the controlled sequence. At any time the buffer shall be associated

31

4. Efficient I/O for the reverse mode

with the i-th aligned data block of the backend file. That is, the b bytes in the buffer correspond
to the b bytes of data from i · b to (i + 1) · b − 1. This is exactly the buffering strategy that the
GNU C library also employs, as detailed in Section 4.5.2.

BlockSinkSource, an I/O layer for blocks of data The StreambufBlocker class needs a
mechanism to write and read such data blocks when its memory buffer becomes full. For this
purpose it uses the BlockSinkSource interface shown in Listing 9:

1 int writeBlock (char ∗ bu f f e r , s i z e_t index) = 0 ;
2 char ∗ readBlock (s i z e_t index) = 0 ;
3 char ∗ getFreeBlock (s i z e_t index) = 0 ;
4 s i z e_t bu f f e r S i z e () const = 0 ;
5 int sync () = 0 ;
6 int preReadBlock (s i z e_t index) = 0 ;

Listing 9: The virtual methods of interface BlockSinkSource.

In this interface, the method parameter index corresponds to the block index i. The method
bufferSize returns the block size b. The interface BlockSinkSource is used by StreambufBlocker
as follows: The method getFreeBlock is called first to obtain a buffer block. The stream buffer
method underflow calls readBlock to obtain a buffer block filled with the i-th data block from
the file. The StreambufBlocker uses writeBlock to write the data in the current buffer block to
disk. Then it has to call getFreeBlock again to obtain a free buffer block again. The crucial point
in the design of this interface is that the pointer returned by getFreeBlock need not be the same
as before. So, it is possible that the BlockSinkSource internally holds several buffers, and this
in turn allows it to use asynchronous I/O. However, just as well, another BlockSinkSource might
have just one buffer block and use synchronous I/O. This latter case is implemented by the class
BlockSinkSourceFiles (cf. Figure 7), which writes every block to an individual file on disk using
the standard std::fstream.

As indicated above, one purpose of StreambufBlocker is to implement a prefetching strategy.
The user can set a number P of blocks to be prefetched. The prefetching of the data is actually
triggered by StreambufBlocker via calling the method preReadBlock. After any call readBlock(i),
StreambufBlocker will also call preReadBlock(i−1), ..., preReadBlock(i−P), as long as i− P ≥ 0.

We now describe the system for managing multiple buffer blocks. There is an implementation
of the interface BlockSinkSource called BlockSinkSourceAsyncIO. This class has M > 1 different
memory buffers. It maintains a state field, an index field, and a request field for each buffer.
It also maintains a field indicating the current buffer, i.e., the index 0 ≤ k < M of the buffer
block that was last returned by getFreeBuffer or readBuffer. The state of a buffer can be either
UNUSED, BEING_READ, BEING_WRITTEN, or LOADED. The request field is zero when the
state is either UNUSED or LOADED. When the state is BEING_READ or BEING_WRITTEN,
the request field holds an integer handle describing the pending I/O request. The index field holds
the data block index i with which a buffer block is associated. The state UNUSED represents
buffer blocks which are as of yet unused. This is the initial state of all buffer blocks. Buffer blocks
are in the state LOADED if they have completed their read or write operation, and hence are in
sync with the backend file.

The class BlockSinkSourceAsyncIO uses the Least Recently Used (LRU) strategy to evict data
blocks from buffer blocks when a free buffer is needed. The LRU strategy is of course applied only
to the set of buffers that are in a committed state, i.e., in state UNUSED or LOADED.

Asynchronous I/O library routines The interface that is used to encapsulate the third layer
of our software stack is called AsynchronousIO and shown in Listing 10.

1 int iwr i teData (char ∗data , s i z e_t n , s i z e_t o f f s e t , int ∗handle) ;
2 int i readData (char ∗data , s i z e_t n , s i z e_t o f f s e t , int ∗handle) ;
3 int readData (char ∗data , s i z e_t n , s i z e_t o f f s e t) ;

32

4. Efficient I/O for the reverse mode

4 int cance l (int ∗handle) ;
5 int wait (int ∗handle) ;
6 int waitany (int ∗handles , unsigned n , int ∗which) ;
7 int waitsome (int ∗handles , unsigned n ,
8 int ∗ completed , int ∗numCompleted) ;
9 int wa i t a l l (int ∗handles , unsigned n) ;

Listing 10: The virtual methods of the AsynchronousIO interface provide an abstraction layer
over the POSIX AIO and MPI-IO APIs.

The main idea in this interface is that we subsume the different kinds of pointers and request
handles of the various library routines for asynchronous I/O under a common mechanism using
integer handles.

For the asynchronous I/O operations that are needed to implement the AsynchronousIO in-
terface shown in Listing 10, we have at least the following three options: The first is the POSIX
AIO library, the second is the use of the immediate file operations of the MPI-IO section of the
MPI 2 standard, and the third is the use of the I/O routines of the Windows API.

The AIO routines are specified in the POSIX standard. Hence, they are readily available on
most Unix systems. The available functions are aio_read and aio_write for asynchronous read
and write requests. The functions receive a pointer to a so-called AIO control block of type struct
aiocb containing the necessary information: a pointer to the data, the length of the data, the file
offset, and the file descriptor. The aiocb pointer also serves as the request handle. The function
aio_error can be used to test for the current state of a request. When aio_error indicates that
a request has completed, aio_return can be used to obtain the amount of data that was actually
read or written. Thus aio_return returns the value that a corresponding read or write system call
would have returned. A request can be cancelled using aio_cancel. The function aio_suspend
takes an array of pointers to aiocb structs and returns when at least one of the requests completes.

MPI-IO includes the two functions MPI_File_iread_at and MPI_File_iwrite_at which can
read or write a block of data to a file at a specified offset. These functions return immediately, as
the prefix i indicates, and return an MPI_Request structure. These are the same as those returned
by the immediate send and receive operations, and hence one can use MPI_Wait, MPI_Waitany,
MPI_Waitsome, MPI_Waitall, MPI_Cancel, and MPI_Test on them.

We tested three common MPI libraries, namely OpenMPI 1.4.5, IntelMPI 4.0 and MPICH2.
We found that apparently OpenMPI and IntelMPI do not support the asynchronous I/O op-
erations of MPI-IO, although they do provide the API functions. However, the read or write
operations using MPI_File_iread_at and MPI_File_iwrite_at take a rather long time while the
following MPI_Wait returns instantaneously. Only the MPICH2 library showed the desired be-
haviour, i.e., the read and write operations indeed returned quickly. The MPICH2 library also
appears promising because it has quite an elaborate implementation of MPI-IO, contained in a
subsystem called ROMIO [TLG04]. This ROMIO library in turn contains an abstraction layer
called ADIO with several specialised implementations for common file systems in HPC. Among
others, it supports the LUSTRE file system and incorporates a number of techniques that have
been shown to result in good performance on this file system [DL09]. While we tested our soft-
ware only with the LUSTRE file system, we expect that the implementations of ADIO for other
common HPC file systems are similar. There are efforts to make the ROMIO software actually
check its performance when running in a certain environment, by using formal performance ex-
pectations and requirements [Gro+08]. Hence, by using the MPICH2 library for our purpose we
hope to obtain good performance on most of the common HPC file systems.

The class AsyncIO_AIO implements the interface AsynchronousIO by using the AIO routines.
In this case the methods with name prefix “wait” are all implemented using aio_suspend. The
method readData reads data synchronously and is implemented using a basic read system call. The
class AsyncIO_MPIO implements AsynchronousIO using MPI-IO from MPICH2. In this case the
method readData is implemented by calling the MPI-IO (blocking) function MPI_file_read_at.
The methods with prefix “wait” are mapped to the MPI routines of the same name. However,
we wrote our own version of MPI_Waitsome, as that function of MPICH2 appears to behave

33

4. Efficient I/O for the reverse mode

identically to MPI_Waitall, i.e., it always waits rather long, until all pending requests have
finished. This is obviously not our intention, instead we rather want it to behave more like
MPI_Waitany, but with the capability to wrap up more than one completed I/O operation. The
function myMPI_Waitsome is shown in Listing 11 in the appendix.

We also create two further implementations of the AsynchronousIO interface using blocking I/O
routines, class SyncIO and class SyncIO_OSHints. This results in a stream buffer version which
uses multiple buffer blocks but with blocking I/O. Write requests are performed immediately,
but the information of read requests is stored and they are completed using a blocking read
when the corresponding wait operation is called. The second variant in addition calls the function
posix_fadvise with parameter advice set to POSIX_FADV_WILLNEED upon calls to iread to tell
the OS that the data block in question will be required soon. This causes the OS to asynchronously
fetch at least part of that data into unused memory pages [POS01]. Note that using multiple buffer
blocks eliminates the redundant read problem from Section 4.5.2. Going back to the example
situation in Figure 4, if we use two blocks of memory, one for data block i and the other for data
block i− 1, then we have to read block i− 1 only once, if we keep data block i loaded in the other
buffer. For this reason, using these two variants we may gauge the performance that we gain by
avoiding the redundant read problem separately. So, this appears to be interesting for comparison.

4.6 Performance results
For quantifying the performance of RIOS, we consider the following two situations. The first
situation is an artificially-generated test case incorporating a write and read pattern that is typical
for a large-scale RM differentiated code. The focus of this test is on a comparison of the various
iostream variants without taking into account too many additional issues of a real-world RM
application. In the second situation, we apply the reverse mode of AD to a real-world application
arising from fluid mechanics and compare the performance of RIOS in this more practical setting.

In the performance tests, we label the data with the name of the stack that is used, in the case
of native-cell, mem, fstream, and sstream. In the case of abuffered-stream, we label the
data with the name of the underlying RIOS stream:

C–File A simple stream buffer which uses a plain C–style file as the backend, as described in
Section 4.5.4.

SBB+Files An I/O stream using StreambufBlocker and BlockSinkSourceFiles, i.e., each block
is written to a particular file using blocking I/O.

MB+SyncIO An I/O stream using StreambufBlocker and BlockSinkSourceAsyncIO, and at
the bottom the class SyncIO, i.e., the AsynchronousIO implementation that uses blocking I/O
(MB stands for the multi buffering done by BlockSinkSourceAsyncIO).

MB+OSHints Like MB+SyncIO, but with pre-read hints to the OS via posix_fadvise.

MB+AIO An I/O stream using StreambufBlocker with BlockSinkSourceAsyncIO and the class
AsyncIO_AIO, which is the AsynchronousIO implementation that uses the AIO asynchronous
read and write functions.

MB+MPI-IO Like MB+AIO, but using the class AsyncIO_AIO, i.e. the AsynchronousIO
implementation using the MPI-IO asynchronous read and write functions of the MPICH2 library.

Configuration parameters, system, and hardware In the case of fstream, we set the
buffer size to 5 kB, a rather small size chosen to avoid the problems with the buffering strategy,
as detailed in Section 4.5.3. In the case of sstream, we set the buffer size to 1GB. With all of

34

4. Efficient I/O for the reverse mode

the I/O streams with “MB” in the name, the total buffer size is set to 1GB, split into 16 pieces
of 64MB each. In the case of SBB+Files, we set the buffer size to 64MB.

The tests are run on the Linux cluster at the Center for Computing and Communication (CCC)
of RWTH Aachen University. Computations are carried out on a single node of the Bullx Blade
B500 cluster called “MPI-Small” of the CCC. Such a node consists of two Intel Westmere X5675
hex core processors running at 3.06 GHz. The system runs a Linux kernel version 2.6.32 and we
use Matlab version 2012b and version 1.5rc1 of the MPICH2 library. Tapenade version 3.6 and
ADiMat version 0.5.8 carry out the AD transformations for Fortran and Matlab. The MPICH2
library, the software stack described here, and the MEX functions are compiled with GCC 4.6.
The tests are run through batch system requests, where the amount of available main memory
is limited to 15 GB and the node is reserved exclusively. When data is written to disk the file is
created on a LUSTRE file system attached via a fast network.

4.6.1 Test A: Artificial simulation code

To assess the performance of the different I/O streams we conduct an artificial test. This test
simulates the data access pattern produced by the stack in a large-scale RM-differentiated code
which does use recomputation for certain parts of the code. In this test, we first write a large
amount of data and then read and write data in a zig-zag pattern, reading for example 3GB and
writing 1GB until the stack is empty. The data reads and writes are done in chunks of 1MB
of data which is obtained from /dev/urandom. Before each read or write of such a chunk the
test program multiplies a double array of size wMB by a scalar, and then divides it by the same
scalar, where w is the work factor. This double array has w · 217 items, and thus w · 218 FLOPS
are performed before each 1MB write or read. These floating point computations constitute a
pseudo workload simulating those of a real world RM-differentiated program.

In one test run, the zig-zag I/O pattern is performed with each of the various iostream im-
plementations. The following six timing results are obtained in each case: The total time of the
I/O pattern, labelled total, the read and write times, labelled read and write, the read and write
calculation times, labelled r-calc and w-calc and the remaining time, labelled rest. The read time
includes the r-calc time and likewise the write time includes the w-calc time. The total time is
the time from program startup until termination and the rest time is calculated a-posteriori by
subtracting the read and write times from the total time. The purpose of this is to assess the
amount of program runtime that is not covered by the read and write times. Each test is per-
formed N times and we compute the mean and the corrected sample standard deviation (SSD) σ
of the three timings.

The particular tests are configured as follows: In Test lustre-W2 and lustre-W8, we initially
write 100GB, and then alternatingly we read 3GB and write 1GB, until the size of the pseudo
stack is 4GB. This remaining data is then read again. This amounts to a total of 148GB of data
that is written and read. The work factor is w = 2 in Test lustre-W2 and w = 8 in Test lustre-W8.
These tests are run N = 32 times.

The results are shown in Figure 8 and Figure 9. For each I/O stream implementation, the mean
times of the N test runs are shown with error bars with a total length of 2σ. We also compute
the corresponding I/O speeds, which are shown in Figure 10 and Figure 11. In our results the
r-calc and w-calc are the same for all stacks, which is clearly expected. The read times and, hence,
also the total times are fairly large for both the fstream and C-file stacks, but much larger for
fstream. The write times of these standard components are fairly good. Moving on to the stacks
SBB+Files and MB+OSHints, we see that these cause a significant improvement in the read
times but a slight increase in the write times. The MB+OSHints I/O stream performs slightly
better than the MB+SyncIO stream, which indicates that the calls to posix_fadvise actually do
make a difference for the read times. For the sake of brevity, we do not report the results for the
MB+SyncIO stream here, since these are fairly comparable, though slightly worse, than those
of MB+OSHints. A further drop in both read and write times results from the stacks which
use asynchronous I/O, i.e., MB+AIO and MB+MPIO. The performance of these two stacks is
nearly identical. Moreover, for the work factor w = 8, the r-calc and w-calc times of these stacks

35

4. Efficient I/O for the reverse mode

are almost identical to the read and write times. This indicates that, here, the I/O operations
happen during the computations. However, for w = 2, the I/O times are still larger than the
calculation times. That is, the amount of computation is too small to fully hide the overhead
caused by data I/O.

Our conclusion from these tests is that the buffering done by the standard I/O facilities in both
C++ and C is inadequate for reverse reading. A large speedup can be gained from suitably tailored
buffering strategies. For example, in the Test lustre-W2, using the MB+OSHints stream results
in a performance increase in the total runtime by a factor of more than 2 over standard C file I/O,
with a total time of 1585 s for C-file and 626 s for MB+OSHints. Using asynchronous I/O on
top of that gives us an additional performance increase of about 28%, with a total time of 487 s
for the MB-AIO stream. The advantage gained from using asynchronous I/O is even larger with
an increased computational workload. In Test lustre-W8, we measure an additional performance
increase of almost 50% when comparing MB-OSHints and MB-AIO. More precisely, the total
time of 1108 s for MB-OSHints decreases to 741 s for MB-AIO. On the other hand, the I/O
speed is larger when there are less computations. In Test lustre-W2, we achieve read and write
speeds of 600MB/s and above, which is fairly close to the best results achieved on LUSTRE
systems [TKC13]. Also in this test, the best read speed (and runtime) is actually achieved with
MB+OSHints. However, when in comes to writing and to larger computational workloads as in
Test lustre-W8, the performance is clearly superior for asynchronous I/O.

fstream C−File SBB+Files MB+OSHints MB+AIO MB+MPIO
0

500

1000

1500

2000

2500

Stream type

T
im

e
(s
)

total
read
r−calc
write
w−calc
rest

Figure 8: Timing results for Test A with a work factor w = 2.

4.6.2 Test B: Solution of Burgers equation

In the second test, we consider a code that solves the Burgers equation in one space dimension
with periodic boundary conditions [JX95]. The simulation time is tend − t0 = 3 s, the spatial
resolution uses nx grid points and second-order terms are used. In Figure 12, we show the initial
state u0 = u(t0) and the final state uend = u(tend) of the simulation, computed with nx = 200 grid
points. The wave imposed as the initial condition travels towards the right and a sharp shock is
developed. We consider a scalar cost function which compares the solution at the simulation end
time tend to a given solution. This scalar function is differentiated in reverse mode, computing the
gradient of the cost function w.r.t. the initial solution. Thus, the length of that gradient is nx.

The code for the solution of Burgers equation, originally written in Matlab by Michael Herty of
RWTH Aachen University, serves as a test example for shocks in a hyperbolic partial differential
equation (PDE). This Matlab code is translated to Fortran90 and C++. To construct an example
for RM differentiation, we compute the L2-norm of the final state uend. The gradient of this

36

4. Efficient I/O for the reverse mode

fstream C−File SBB+Files MB+OSHints MB+AIO MB+MPIO
0

500

1000

1500

2000

2500

3000

3500

Stream type

T
im

e
(s
)

total
read
r−calc
write
w−calc
rest

Figure 9: Timing results for Test A with a work factor w = 8.

scalar result can be computed in Matlab by RM differentiation with ADiMat, in Fortran90 by
RM differentiation with Tapenade. We also differentiate the C++ version with ADOL–C [GJU96]
in RM. Table 1 gives some performance values for this test problem. In that table, we show the
runtimes and stack sizes for the particular test case with nx = 2000. We present the runtime
of the function evaluation tf in seconds, the runtime of the gradient evaluation t∇ in seconds,
the differentiation overhead factor t∇/tf , and the size of the stack or tape produced by the AD
tools in MB. We use ADOL–C version 2.3, Tapenade version 3.6, and ADiMat version 0.5.8. For
comparison, we also approximate the gradient using central finite differences (FD) in Fortran90.
We run the tests with ADiMat using the stacks native-cell, MB+SyncIO, MB+MPI-IO and
the test with Tapenade using the supplied in-memory stack, and the RIOS stacks MB+SyncIO
and MB+MPI-IO. The RIOS stacks are configured to use 1 GB of main memory. The value for
tf in each case is the runtime of the plain non-differentiated program. The ADOL–C results are
intended to serve as a reference value. We configure ADOL–C to also use 1 GB of main memory
for the tapes, roughly divided in proportion to the total size of each of the four tapes produced,
and the time t∇ in this case includes the taping and the gradient evaluation with a call to the
fos_reverse function3. All the programs are compiled using the GCC compilers version 4.7.2 with
optimisation flags -O3 -march=native, and in each case the files go to a LUSTRE file system
attached via a fast network. Since ADOL–C also writes and reads its data in blocks, we expect
the performance to be comparable to that of MB+SyncIO or MB+OSHints, and the gain that
could be achieved by using the asynchronous I/O features of RIOS with ADOL–C to be about
30% to 50%, as suggested by the corresponding results in the previous Section 4.6.1.

The results for the runtime to evaluate the function, tf , show that the fastest language is
Fortran90; computing the function in C++ takes more than twice as long and this time is still
somewhat longer using Matlab. We now focus on the time t∇ needed to compute the gradient.
As expected, computing the nx = 2000 components of the gradient with FD takes almost exactly
2nx = 4000 times as long as the time tf . Computing the gradient in RM using Tapenade, we
achieve a very low runtime and an overhead factor close to the theoretical optimum of 3. During
the computation of the gradient, Tapenade produces a stack of almost 1GB. When this stack
is written to disk using RIOS the runtime increases, although the penalty is small for using the
MB+MPI-IO. Using ADiMat, the serialised stack size is slightly more than 4.5GB, and both
RIOS stacks perform better than native-cell, although in that case the entire stack remains in
main memory. ADOL–C produces a tape of more than 20GB and its runtime is the largest of all
tested configurations. While these test runs are spot checks, the numbers reflect the advantages

3Download the source code of this test from http://rios.ourproject.org/

37

http://rios.ourproject.org/

4. Efficient I/O for the reverse mode

fstream C−File SBB+Files MB+OSHints MB+AIO MB+MPIO
0

100

200

300

400

500

600

700

Stream type

I/
O

S
p
ee
d
(M

B
/
s)

total
read
write

Figure 10: I/O speed results for Test A with a work factor w = 2.

Language AD Tool tf (s) t∇(s) tf /t∇ Stack (MB) I/O Speed (MB/s)
C++ ADOL–C 2.3 1.051 108.5 103.2 21605 199.1
Fortran90 Tapenade 3.6 0.517 2.31 4.469 913.6 395.5
Fortran90 + MB+SyncIO 0.517 4.548 8.797 913.6 200.9
Fortran90 + MB+MPI-IO 0.517 2.638 5.102 913.6 346.4
Fortran90 FD 0.517 2064 3992 0 0
Matlab ADiMat 0.5.9 1.277 79.88 62.57 – –
Matlab + MB+SyncIO 1.277 69.52 54.46 4560 57.09
Matlab + MB+MPI-IO 1.277 56.71 44.42 4560 80.41

Table 1: Function runtime tf , gradient runtime t∇, overhead factor, stack size, and I/O speed for
Test B with nx = 2000 using various AD tool configurations and programming languages.

of AD based on source transformation over operator overloading and tracing based techniques
and also the advantages of hierarchical AD approaches [BH96; Büc02; Gil08; TFP03] that are
prevalent in “higher-level languages” with builtin vectors and vector arithmetic.

Now consider Figure 13 and Figure 14, showing a qualitative impression of the stack history.
To produce these plots, we augment the RM source code with special statements that query the
current time, number of items on the stack, and the size of stack in bytes. This information is
taken upon entering and leaving each of the functions in the adjoint code and, in addition, at the
reversal point which is the point in the top-level adjoint function where the forward sweep ends
and the reverse sweep starts. At this point the stack is largest. To compare the different stack
implementations, we shift the time information so that the reversal point of each run is placed
at time t = 0. In Figure 13, we plot the number of items on the stack over time of a small test
case where nx = 1585. In Figure 14, we plot the size of the stack in MB of a large test case with
nx = 6310. In the small test case, the total stack has a size of about 2.9GB and can be kept
in main memory. Hence, we test all available stacks for the small test case. For the two stacks
native-cell and mem, we do not have the stack size information. Also, in the large test case,
the stack has a size of about 46GB and, thus, we can test only those stacks that support writing
data to the hard disk.

The lines labelled “ideal” indicate an ideal forward sweep which takes time tf with no additional
overhead followed by an ideal reverse sweep which takes time 3tf . These lines run from point
(−tf , 0) in the figures to the largest stack at time t = 0 and back down to the point (3tf , 0). We
have tf = 1.1 s in the small and tf = 12.66 s in the large case. Also, the data labelled “None” are

38

4. Efficient I/O for the reverse mode

fstream C−File SBB+Files MB+OSHints MB+AIO MB+MPIO
0

100

200

300

400

Stream type

I/
O

S
p
ee
d
(M

B
/
s)

total
read
write

Figure 11: I/O speed results for Test A with a work factor w = 8.

0 1 2 3 4 5 6
0

0.5

1

x

u
(x
)

uend
u0

Figure 12: The initial condition u0 of the Burgers equation and the final state uend.

measurements of a stack similar to native-cell but where the push function does nothing except
to count the number of pushed items. The idea here is that we wish to gauge the performance of
the augmented forward sweep code, but excluding the actual stack operations. When using this
stack, the reverse sweep cannot be run and so we do not have the data of that. When showing the
large case results, the stack “None” is represented by a straight line from the point (−tFor,None, 0)
to the top of the stack, where tFor,None is the time of the forward sweep using that stack, since
we do not have the stack sizes in this case.

From the results we see that the reverse sweep generally takes longer than the forward sweep,
which is expected. We also see that the stacks implemented as MEX functions, except fstream,
are faster than those written in Matlab. Some of the MEX stacks which do save the data are even
faster during the forward sweep than “None”, which does nothing. The stair-like appearance of the
data for the stack fstream is due to the Matlab process hanging in wait for I/O completion. The
particular shape of the stairs is different for each test run. These waiting periods are smoothed
over by using asynchronous I/O. In the small test case, we see that the stacks using asynchronous
I/O to disk are only marginally slower than those MEX stacks that keep the data in memory.
In the large test case, the asynchronous IO stacks save about 50% of the time. Note that with
the stack fstream there is a period of very slow I/O towards the end of the reverse sweep, for
example at t = 350 s the stack still has a size of about 350 MB.

Next, we conduct tests with varying problem size nx ranging from 102 to 104.5 in 26 loga-
rithmically equidistant steps. The results are reported in Figure 15 to Figure 22. For each stack

39

4. Efficient I/O for the reverse mode

−20 −10 0 10 20 30
0

1

2

3

4
x 105

t (s)

It
em

s
p
u
sh

ed

ideal
sstream
fstream
mem
MB+AIO
MB+MPI−IO
native−cell
None

Figure 13: The stack history for Test B of various I/O streams in terms of the number of items
for a small test case, nx = 1585.

implementation, we run the tests in ascending order of nx. When a test run takes longer than
a threshold time ts = 600 s, the test series is aborted. In Fortran, we limit the virtual memory
using the ulimit command to 4GB. In Matlab, we run the tests with in-memory stacks only up
to nx = 3000 to avoid running out of memory. In the case of sstream there appears to be a bug
in the stdc++ library shipped with Matlab, which causes a crash when the stack becomes larger
than about 2.5GB. The correct behaviour would be to set the fail-bit of the iostream and possibly
raise an exception indicating the exhaustion of memory. Hence, with this stack we run the tests
only up to nx = 1600. Each test is run N = 16 times to gauge the variance in the test results.

The RM differentiation uses the so-called save-all strategy or split mode which means that
the adjoint code consists of one large forward sweep followed by one large reverse sweep of the
complete code [GW08a]. In ADiMat this is the default, while in Tapenade a strategy based on
recomputation and checkpointing is the default, but we set the save-all strategy for all subroutines
via options. It should be noted that in a real-world application of the RM of AD one will probably
do make use of recomputation or checkpointing strategies in order to achieve a smaller stack size.
However we deliberately use the store-all approach in order to illustrate the capabilities of RIOS.

In Figure 15, the runtimes tf of the cost function over varying nx are shown. We show the
mean values of the N = 16 test runs with error bars of length of 2σ. As can be seen in the
figure, the runtime rises from about 0.03 s for nx = 100 to 303.89 s for nx = 2.51 · 104. The
variance in the timings is rather small, except for the two largest values of nx. The runtime rises
superlinearly because of the adaptive time stepping, which takes smaller time steps with larger
spatial resolutions and thus the number of time steps also rises with nx. Also in Figure 15, we
show the bandwidth theoretically required by the forward sweep of the adjoint function, labelled
ideal bandwidth. This is obtained by dividing the size S of the stack by the average runtime tf .
We see that this appears to flatten off at a couple of GB/s for the larger problem sizes. The data
labelled measured bandwidth is 2S (since the data is written and read) divided by the best gradient
runtime, obtained with MB+MPI-IO, which is also shown in the figure.

In Figure 16, the stack sizes are plotted over nx. The blue line, with the scale on the left,
shows the size of the stack in MB, while the green line, where the scale is on the right, shows the
number of items that are pushed on the stack.

In Figure 17 the runtimes, t∇, of the differentiated function are shown. For smaller values
of nx, we see that the in-memory stacks implemented as MEX functions take almost exactly
the same time. This shows that the serialisation layer does not produce a large overhead. The
stacks native-cell, fstream and C-File are noticeably slower, the first probably because of

40

4. Efficient I/O for the reverse mode

−150 −100 −50 0 50 100 150 200 250 300 350
0

1

2

3

4

5
x 104

t (s)

S
iz
e
(M

B
)

ideal
fstream
MB+AIO
MB+MPI−IO
None

Figure 14: The stack history for Test B of various I/O streams in terms of the stack size for a
large test case, nx = 6310.

the interpretation time of the Matlab code and the second because of the file I/O.
In Figure 18 the overhead factor t∇/tf of the previous tests are shown. In this case where we

run N = 16 instances of each test we represent this quantity in the plot as follows. This ratio is
computed for each test instance individually, and then we compute the mean and the SSD of these
ratios. These results show that for most stack implementations there is a clear downwards trend
with increasing nx. For problem sizes nx > 1000 the mean overhead factor is about 30 or less.

In Figure 19, Figure 20, Figure 21, and Figure 22 we show the corresponding results for
Fortran90 differentiated in RM with Tapenade. The timing results show that here the advantage
of using RIOS over plain C or C++ I/O is not quite as large, however it is still significant. The
reason might be that there are not as many small data items since there is no serialisation control
data. Again however, the main performance enhancement seems to stem from the block forming
layer, and asynchronous I/O gives a small yet considerable boost on top of that. Also we see
again that there is no penalty of using RIOS over in-memory stacks for small to medium problem
sizes. The stack sizes and also the bandwidth estimates are much smaller, but also closer together,
than in the case of Matlab/ADiMat. This is probably the effect of the to-be-recorded analysis in
Tapenade which apparently saves a lot of data from being pushed unnecessarily.

4.7 Conclusion and Future work
We design, implement, and evaluate a layered software architecture for the out-of-core storage of
stack data to be used in the reverse mode (RM) of automatic differentiation (AD). This software
architecture is called RIOS and provides a standard C++ I/O stream that abstracts from the
underlying implementation. A multi buffering strategy and asynchronous I/O operations are used
to enable the efficient retrieval of large-scale data from file streams in reverse order. This data
access pattern is commonly required in the RM of AD and, more generally, in trace-based AD
tools. In particular, we provide for the peculiar data access pattern of a stack, i.e., consecutive
write and reverse read operations. To this end, RIOS implements a carefully designed buffering
strategy that facilitates the switch from writing to reading. It is currently used to provide efficient
stacks for the RM in the AD tool ADiMat for Matlab. However, by additionally carrying out
numerical experiments with the AD tool Tapenade for Fortran, we give evidence that RIOS also
provides a crucial infrastructural building block in the more general context of RM AD and also
of trace-based tools.

RIOS provides several different stack implementations whose performance is evaluated using

41

4. Efficient I/O for the reverse mode

10
2

10
3

10
4

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

T
im

e
(s
)

nx

n = 1585 n = 6310

101

102

103

104

B
a
n
d
w
id
th

(M
B
/
s)

Function time tf
Gradient time t∇ (MB+MPI-IO)
Ideal bandwidth
Measured bandwidth

Figure 15: Function and gradient runtimes (left axis) and stack bandwidths (right axis) for Test B
and Matlab/ADiMat, N = 16.

two test cases. As the first test case, an artificial simulation code is considered that mimics a
typical storage access pattern occurring in the RM of AD. The second test case arises from fluid
mechanics and consists of a code that solves the Burgers equation. Both cases are investigated
using codes written in Matlab as well as Fortran. The AD transformations are carried out using the
AD tools ADiMat and Tapenade, respectively. These performance tests demonstrate substantial
savings in runtime using RIOS to implement stacks for the RM of AD.

We foresee several potential directions of future research and enhancements. One might split
the data stream into different categories as suggested in Section 4.4.2 and also apply suitable
compression techniques to the control streams. We would also like to test RIOS with trace-based
AD tools such as ADOL–C or CppAD. Furthermore, RIOS is also relevant outside the field of
AD; other software that produce large traces of programs could benefit from RIOS, in particular
if the traces are read in reverse direction. One could also investigate device parallelism for storing
and retrieving the data, for example, distributing the data to the local disks of multiple hosts via
the network. This would increase the average I/O bandwidth. In our studies, we also compare
two different flavors of asynchronous I/O. More precisely, the POSIX AIO programming API is
compared with the corresponding functions provided by the MPI-IO component of MPI 2. In
doing so, we use the MPI-IO library on a single host for the sole purpose of asynchronous I/O.
While we found only small differences in the performance between these two approaches, using
MPI 2 might allow for more interesting usage patterns for high volume data I/O in the future.

4.8 Source code listings

Custom version of MPI function MPI_Waitsome

The function myMPI_Waitsome whos source code is shown in Listing 11 has the same semantics
as MPI_Waitany, but behaves differently from the MPICH2 version; see Section 4.5.5 for the
corresponding discussion.

42

4. Efficient I/O for the reverse mode

10
2

10
3

10
4

10
1

10
2

10
3

10
4

10
5

10
6

S
iz
e
(M

B
)

nx

nx = 1585 nx = 6310

104

105

106

107

108

It
em

s
p
u
sh

ed

Size of stack
Items pushed

Figure 16: Stack size (left axis) and number of items pushed on the stack (right axis) for Test B
and Matlab/ADiMat.

1 int myMPI_Waitsome(int cnt , MPI_Request ∗ r eques t s , int ∗numCompleted ,
int ∗ completed , MPI_Status ∗ s t a t u s e s) {

2 int r e s = 0 , f l a g ;
3 bool done = true ;
4 ∗numCompleted = MPI_UNDEFINED;
5 for (int i = 0 ; i < cnt ; ++i) {
6 i f (r eque s t s [i] != MPI_REQUEST_NULL) done = fa l se ;
7 }
8 i f (done) return r e s ; // a l l are MPI_REQUEST_NULL −> return
9
10 ∗numCompleted = 0 ;
11 do {
12 for (int i = 0 ; i < cnt ; ++i) {
13 i f (r eque s t s [i] != MPI_REQUEST_NULL) {
14 r e s = MPI_Test(r eque s t s + i , &f l ag , s t a t u s e s + ∗numCompleted) ;
15 i f (f l a g) {
16 completed [∗ numCompleted] = i ;
17 ++∗numCompleted ;
18 }
19 }
20 }
21 } while (∗numCompleted == 0) ;
22 return r e s ;
23 }

Listing 11: The implementation of MPI_Waitsome we use instead of the one in MPICH2.

43

5. The differentiation of selected MATLAB toolbox functions and builtins

10
2

10
3

10
4

10
0

10
1

10
2

10
3

nx

t ∇
(s
)

nx = 1585 nx = 6310

1 1.25 1.5 1.75 2

x 10
4

500

1000

1500

2000

2500

fstream
C−File
SBB+Files
MB+AIO
MB+MPI−IO
MB+OSHints
native−cell

Figure 17: Gradient runtimes using various different stack implementations for Test B and Mat-
lab/ADiMat, N = 16.

5 The differentiation of selected MATLAB toolbox func-
tions and builtins

In this sections we want to discuss the derivative propagation steps that are the done for each
of the elementary operations in MATLAB. Since we can devolve MATLAB basic block code in
principle to a sequence of assignments with nested function calls on the RHS, we can safely equate
a builtin function with an elemenary operation in MATLAB. Hence, in ADiMat we have the
situation that the language has very many elementary operations, compared to Fortran or C, for
example. Accordingly ADiMat still supports only a small subset of all available builtins even
though quite a few have been implemented over the years. In this section we want to present
some general concepts to the structure of the propagation steps and also present some builtins
exemplarily in more detail, showcasing the ideas.

The derivative propagation steps frequently employ common patterns, which we would like to
discuss first in Section 5.1. We identify the three generic cases of

arithmetic propagation where a partial derivative exists in the form of a matrix, which is
ideally sparse or even diagonal

structural propagation where the derivative can be created by direct manipulation

algorithmic propagation where we apply AD to a devolved form of the builtin

We saw in the introduction section to the derivative classes 2.5 that the reshape-to-vector-and-
matrix-multiply operations d_x(:) * M or M * d_x(:).’ are by far the most efficient of the
array based derivative class, so arithmetic propagation is clearly preferable. A clear advantage is
of course also that the same derivative is used in FM and RM. This technique is discussed in the
Section 5.1.1 in more detail.

44

5. The differentiation of selected MATLAB toolbox functions and builtins

10
2

10
3

10
4

10
1

10
2

10
3

nx

t ∇
/
t f

nx = 1585 nx = 6310

1 1.25 1.5 1.75 2

x 10
4

20

30

40

50fstream
C−File
SBB+Files
MB+AIO
MB+MPI−IO
MB+OSHints
native−cell

Figure 18: Overhead factors using various different stack implementations for Test B and Mat-
lab/ADiMat, N = 16.

Sometimes it may be advantageous however to perform the required operation directly on the
derivative, with structural propagation. This technique is discussed in the Section 5.1.2. For
example, in the FM, the derivative code for mean(x,i) is simply mean(d_x,i). In the case of
the vector mode, the derivative class method mean will then call mean(s.m_derivs, i+1) on the
internal array, and thus compute the derivative for all derivative directions with a single call, which
is probably as efficient as it gets. In this case and very many others, it is the very same function
that is needed in the structural propagation in FM, that is, the functions often differentiate to
themselves. For many matrix operations beginning from matrix multiplication mtimes to the
eigen decompostion eig and the singular values decompostion svd structural adjoint propagations
are fortunately known [Gil08] and the corresponding rules have been incorporated into ADiMat.

Finally, we often have the last option to express the builtin in terms of a devolved expression
with only functions and operations that ADiMat already supports. This is used to write a replace-
ment function for the builtin in question and then we let the devolved function be differentiated
by ADiMat. When the source code of the builtin is available, the better, but usually it is not. We
we call this option algorithmic differentiation, and it is discussed in more detail the Section 5.1.3.

This option is also available to ADiMat users as an escape hatch when some builtin is not
supported by ADiMat. For example, when the builtin xyz is called in the code, users may replace
this by a call to myxyz and write a suitable function myxyz that performs the same operation
as xyz and can be differentiated by ADiMat. The ADiMat developers can also use this method.
Interestingly, exactly this strategy, was proposed as the only viable option to differentiate the
matrix exponential expm in MATLAB [AMH09]. So we literally write the MATLAB code of the
suggested Padé approximant as a replacement function of expm, and then differentiate it with
ADiMat in both FM and RM to then distribute the resulting code with the ADiMat runtime.
For certain other matrix operations such as hess and qr the differentiation of the underlying
algorithm may be the only viable option as well. In AD, the differentiation of iterative algorithm
is an established technique. In terms of performance the algorithmic method is quite costly. This

45

5. The differentiation of selected MATLAB toolbox functions and builtins

10
2

10
3

10
4

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

T
im

e
(s
)

nx

10
0

10
1

10
2

10
3

10
4

10
5

B
a
n
d
w
id
th

(M
B
/
s)

Function time tf
Gradient time t∇ (MP+MPI-IO)
Ideal bandwidth
Measured bandwidth

Figure 19: Function and gradient runtimes (left axis) and stack bandwidths (right axis) for Test B
and Fortran/Tapenade, N = 16.

starts with the development effort for a suitable replacement function, but the computational cost
of differentiating an iterative algorithm can also be substantial.

To discuss some practical examples, we have a case study of the Legendre function in Section
5.2. To exhibit some cases that are particularly interesting in the reverse mode, we discuss four
the multiplicative operators times, mtimes, conv, and kron in Section 5.3.

5.1 Generic approaches to the differentiation of toolbox functions and
builtins

In this section we describe the generically available methods for introducing support for a given
builtin in ADiMat. Each builtin performs a certain mathematical operation for which the correct
propagation rules in forward and reverse have to be specified. A generic method is to construct
the local Jacobian and multiply the derivative or adjoint with it, as described in Section 5.1.1. In
many cases it is also advantageous to use so called structural propagation, as described in Section
5.1.2, although this routinely results in different rules for the FM and the RM. Finally, one can
obviously also apply AD to given function implementation to obtain its derivative, as described
in Section 5.1.3. This last approach is relatively costly regarding the performance but in some
mathematically challenging cases the only one available.

5.1.1 Arithmetic propagation

By arithmetic propagation we refer to the provision of the partial derivative or local Jacobian of
a given operation. The partial derivative is provided as a dense and full, sparse or even diagonal
matrix. These cases are implemented in ADiMat by providing a runtime function with name
prefix partial_, for example partial_xyz to return the local Jacobian for a builtin xyz. Given
the local Jacobian J the forward mode rule is roughly speaking J * g_x(:) followed by a reshape
to output size in FM and a_x(:).’ * J followed by a reshape to the input size in RM.

This is the classical approach and usually also the preferable. Firstly, the same partial deriva-
tives can be used in FM and RM. Secondly this is the operation that works most efficiently with

46

5. The differentiation of selected MATLAB toolbox functions and builtins

10
2

10
3

10
4

10
0

10
1

10
2

10
3

10
4

10
5

10
6

S
iz
e
(M

B
)

nx

10
3

10
4

10
5

10
6

10
7

It
em

s
p
u
sh

ed

Size of stack
Items pushed

Figure 20: Stack size (left axis) and number of items pushed on the stack (right axis) for Test B
and Fortran/Tapenade.

the array based derivative class (Section 2.5). Thirdly, the work to construct the local Jacobian
is independent of the number of directional derivatives. As a downside, space is required to store
the Jacobian.

Cases where the local Jacobian is actually densely filled are rather seldom, notable examples
being the builtins roots and poly, where obviously each input value influences all the output
values.

On the other hand an abundantly occuring case is constituted by the numerous vectorized
component-wise builtins in MATLAB, such as sin, sqrt, exp, etc. or the Bessel functions. Here
the local Jacobian is diagonal, so the multiplication reduces to a vectorized call to times.

These cases are implemented in ADiMat by providing a runtime function with name prefix
dpartial_, for example dpartial_xyz to return the diagonal of the partial for a builtin xyz.
Given the diagonal as a plain vector d the propagation rule is d .* g_x(:) in both FM and RM,
followed by a reshape.

The local Jacobians of the vectorized reduction operations such as mean, std, trapz, etc. also
have a common general structure that can be produced efficiently by a double kron product of
sparse matrices, given the particular basic block matrix for the reduction operation in question.
This is also true for the cumulative reductions like cumsum and cumtrapz, where the basic
block is not a vector but a lower triangular matrix.

With the legendre functions discussed in Section 5.2 we saw a special case where each input
component yields a vector of results. Thus the Jacobian is a block diagonal of column vectors,
which as an operator can be expressed as a bsxfun of the times operation, when the Jacobian is
presented in compressed form.

Finally, for indexed array selections, that is, the subsref and subsasgn operations, the most
viable approach also is to construct the local Jacobians, which is possible to do efficiently. In
particular this approach also covers those cases in the RM where a slight difference in semantics
regarding the repeated occurence of indices prohibits the structural approach, see Section 3.3.

47

5. The differentiation of selected MATLAB toolbox functions and builtins

10
2

10
3

10
4

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

nx

t ∇
(s
)

1 2 3

x 10
4

100
250

500

750

1000

1250

1000 2000 3000 4000
1
5

10

15

20

25

memory
fstream
C-File
MB+OSHints
MB+AIO
MB+MPIO

Figure 21: Gradient runtimes using various different stack implementations for Test B and For-
tran/Tapenade, N = 16.

5.1.2 Structural propagation

By structural propagation we refer to all other cases, where any other kind of MATLAB operation,
except multiplication by the local Jacobian, is carried out on the derivatives. For example, ADiMat
uses structural propagation for builtins like sum, mean, diff, fft, and many data rearrangement
functions like flipdims, reshape, permute, shift, etc. and strictly speaking also for the basic
operations on the data structures of cells and structs that are supported in the RM.

For vectorized functions such as mean there usually is an efficient implementation for these
methods in the array-based derivative class, since in most cases the vector based function in
MATLAB allows us to handle the operation on the derivative object in a single call, see Section
2.5.

In particular when the operation in question is a modification of the data structure, the deriva-
tive simply follows suit, as discussed in the Section 3.1 on the data model we use, and in Section
6.5.1 we discussed the storage expressions in AST XML and the corresponding differentiation of
such expressions. In such a case, as in many others, a partial derivative in the form of a matrix
to multiply with does not exist, so we simply must use structural propagation. A mathematical
example for such a case are real and imag, which are not complex analytic and hence do not
have a partial derivative, but which also differentiate to themselves in FM. This looks dangerously
like the data manipulation case for structural propagation also applies here, but as discussed in
Section 3.5 already this cannot be, and in fact this case is more involved, as discussed in Chapter
7.

For many matrix operations beginning from matrix multiplication mtimes to the eigen de-
compostion eig and the singular values decompostion svd structural adjoint propagations can be
derived using matrix arithmetic with a technique using the trace operator [Gil08]. The results
from that work and the corresponding propagation rules have been incorporated into ADiMat.

A downside of structural propagation is that usually the propagation rules for FM and RM

48

5. The differentiation of selected MATLAB toolbox functions and builtins

10
2

10
3

10
4

10
−1

10
0

10
1

10
2

10
3

nx

t ∇
/
t f

1 2 3

x 10
4

2

4

6

8

1000 2000 3000 4000
2

4

6

8

memory
fstream
C-File
MB+OSHints
MB+AIO
MB+MPIO

Figure 22: Overhead factors using various different stack implementations for Test B and For-
tran/Tapenade, N = 16.

are different. In FM mode the progation rule is often the function itself, as is the case for sum,
mean, diff, and fft, for example. In the RM the adjoint propagation has to undo and invert the
operation in question in terms of the data structure, and also perform the correct mathematical
computation of course. Another disadvantage is that any operation used must be supported by
the derivative classes.

Example: The FM and RM propagation rules for fft are simply a call to fft itself on the
derivative object. This means the derivative classes need to have the method fft. In the RM we
have to consider, and undo, the data resizing that may occur depending on the further parameters.

The same holds for the multiplicative operators times, mtimes, conv, and kron, which are
all covered by the Leibniz rule (3) and thus easily handled in FM, while the adjoint propagation
is much more involved in each case, as discussed in Section 5.3.

5.1.3 Algorithmic propagation

By algorithmic propagation we refer to the idea to feed the incoming derivatives into an algorithm
that propagates them internally and thus computes the output derivatives. Such an algorithm is
preferably produced by automatic differentiation and as such a special case of structural propaga-
tion.

The original idea for this approach is from the work for the matrix exponential [AMH09], where
a state-of-the-art method for computing that mathematical function is basically differentiated line
by line in a kind of manual AD in FM.

The generic approach to use in ADiMat is thus obvious. First reverse engineer the function
in MATLAB code and then differentiate with ADiMat. Thus we extend for example the case
of the matrix exponential also to the RM, simply by generating the adjoint code from the same
algorithm source as proposed [AMH09]. The same is done in ADiMat also, for example, for the
builtins qr and hess. By also using algorithmic differentiation for the prod buildin in the RM

49

5. The differentiation of selected MATLAB toolbox functions and builtins

we exploit the famous Speelpenning result for the adjoint of the product reduction [GW08a].
By using this approach to handle builtins with complex functionality, i.e. many internal

branches and special cases, such as norm, we ensure that the propagation rules in forward and
reverse mode are consistent and thus decrease the software development and maintainence effort.

The respective pre-generated function codes are distributed with ADiMat and then called by
the derivative propagation rules of the FM and RM in ADiMat.

The reverse engineered substitute must match the original function exactly, in particular in all
fringe cases, which can be challenging. In doubt the substitute function itself should be used for
consistency, by replacing the builtin in question with it explicitely in the users code. For this reason
the substitution functions, like adimat_expm, adimat_qr, adimat_hess, adimat_prod,
adimat_norm, etc. are also distributed with ADiMat. Obviously the risk for a deviation, i.e.
an incomplete or inconsistent reverse engineering of the original function is minimal in a case like
prod but larger in the cases of the much more involved matrix algorithms.

Another important application of this technique is to fill gaps in the set of builtins supported
by ADiMat. For example, when a builtin like vander is not implemented in ADiMat one can
provide ADiMat with an implementation of vander and let it differentiate that.

An obvious extension of that idea is obviously to directly differentiate any MATLAB codes
distributed with MATLAB or GNU Octave or certain toolboxes. This can be effected by the user
himself by adding the relevant directories to the search path of ADiMat.

5.2 Case study: Legendre functions
The associated Legendre functions are computed by the builtin legendre in MATLAB. This
function is interesting because it yields a family of the Legendre functions for a single point x.
Namely, for a given degree N it returns the values of the Legendre functions of all orders M, 1 ≤
M ≤ N , that means for k input values, the function returns kN outputs. The partial Jacobian is
vector-blockwise diagonal and can be trivially compressed. As a result the multiplication collapses
to a generalized BSX operation with the times operator of the compressed Jacobian function and
the derivative, which can be effected with bsxfun.

There are also numerous special cases in the partial derivatives to be considered so the addition
of this particular builtin to ADiMat can also be cited as one of the cases requiring substantial
mathematical considerations [BW18].

In the reverse mode, as usual, a summation undoes the BSX operation. The implementation
of the bsxfun operator in the array-based derivative classes yields a BSX with an additional
expansion along the directional derivative dimension, as mentioned in Section 2.5, so the whole
operation reduces to a single call to bsxfun even in vector mode, cf. also Section 3.2.

5.3 Case study: the multiplication operators
In this section we discuss four multiplicative operators, namely namely component-wise multipli-
cation x�y, in Matlab times, matrix multiplication x ·y, in Matlab mtimes, discrete convolution
x∗y, in Matlab conv, and the Kronecker product x⊗y, in Matlab kron. For each of these operators
m(x, y) the well known second Leibniz derivative rule holds:

dm(x, y) = m(x, dy) +m(dx, y) (3)

which spells out as
dx∗y = (dx)∗y + x∗(dy)

for the convolution, for example.
This means that in forward mode these operators can be easily handled by recurring to them-

selves in structural propagation according to the Leibniz rule (3). For example, the FM derivative
code for conv(x,y) is conv(g_x,y) + conv(x,g_y). The only thing left to be taken care of is to
add the relevant methods to the derivative classes for the vector mode to work.

50

5. The differentiation of selected MATLAB toolbox functions and builtins

In the reverse mode however, there are some special considerations in each case. These are
summarized as follows:

times Handle scalar expansion

mtimes Multiply adjoint by transposed matrix, handle scalar expansion

conv Convolve adjoint by reverse operand and select subset

kron Set up partial derivative and multiply by transpose

In the following subsections we discuss the four cases in more detail.

5.3.1 Component-wise multiplication

The adjoint of the times builtin can be covered in the same as all the component-wise operators. In
principle the partial derivative is also computed component-wise and multiplied with the adjoint.
The only special case to watch out for is the implicit binary scalar expansion [WBB12]. The
adjoints of z = x�y are obtained by

x =
{
y�z general case∑
y�z x is scalar

y =
{
x�z general case∑
x�z y is scalar

5.3.2 Matrix multiplication

The adjoint of the mtimes builtin w.r.t. one of the operands is given by multiplying the adjoint
with the transpose of the other operand [Gil08]. The adjoints of Z = X · Y are obtained by

X = Z · Y T

Y = XT · Z

These rules also hold for complex matrices identically, i.e. there is no conjugate involved then,
just the transpose. Binary scalar expansion may also happen when one of the operands is a scalar,
in which case mtimes behaves identical to times.

5.3.3 Convolution

For the convolution operator we have the option to use algorithmic differentiation by differenti-
ating through a devolved function that computes the convolution via Fourier transformations, in
Matlab fft. This solution has the usual advantage that little additional work is required from an
implementation point of view.

There is however also a structural propagation. This can be seen by considering the so-called
circulant matrices. Given a vector v ∈ Rn, the circulant matrix Cv ∈ Rn×n is given by placing v
in the first row and filling the remaining rows with circular shifts of v:

Cv =

v1 v2 v3 . . . vn−1 vn

vn v1 v2 . . . vn−2 vn−1
...

...
v3 v4 v5 . . . v1 v2
v2 v3 v4 . . . vn v1

51

5. The differentiation of selected MATLAB toolbox functions and builtins

Now, a discrete convolution z = x∗y ∈ Rm+n−1 of x ∈ Rm and y ∈ Rn can be replaced by
either multiplying x with Cŷ[1 : m, :] or multiplying y with Cx̂[1 : n, :]:

z = x∗y = xT · Cŷ[1 : m, :] (4)
z = x∗y = yT · Cx̂[1 : n, :] (5)

Here ŷ ∈ Rm+n−1 is obtained from y by appending m − 1 zero elements and by Cŷ[1 : m, :]
we denote the reduced circulant which consists of the first m rows of Cŷ. For the case m = n the
reduced circulant is

Cŷ[1 : m, :] =

y1 y2 . . . yn−1 yn 0 . . . 0 0
0 y1 . . . yn−2 yn−1 yn . . . 0 0

...
...

0 0 . . . y1 y2 v3 . . . yn 0
0 0 . . . 0 y1 v2 . . . yn−1 yn

 ,

but in any case Cŷ[1 : m, :]1,1:n = y and Cŷ[1 : m, :]m,(m−1):(m+n−1) = y, that is, the first row is
y left aligned, post-padded with m− 1 zeros and the last, m-th row is y right aligned, pre-padded
with m− 1 zeros.

From what we know about the adjoint of matrix multiplication we can see that for the adjoint
of x we have to multiply the adjoint of z by the transpose of Cŷ[1 : m, :]. When we look at that
transpose Cŷ[1 : m, :]T more closely, we observe that it is a subset of the columns of the reduced
circulant of the reverse of y, conforming to z. We expand the transpose of Cŷ[1 : m, :] by n − 1
columns to the left and to the right which can be filled so as to complete the reduced circulant of
the reverse of y conforming to z.

C←̂−y [1 : (m+ n− 1), :]

=
(
L|Cŷ[1 : m, :]T |R

)

=

yn yn−1 . . . y3 y2
0 yn . . . y4 y3

...
...

0 0 . . . 0 0
0 0 . . . 0 0

∣∣∣∣∣∣∣∣∣∣∣

y1 0 . . . 0 0
y2 y1 . . . 0 0

...
...

0 0 . . . yn yn−1
0 0 . . . 0 yn

∣∣∣∣∣∣∣∣∣∣∣

0 0 . . . 0 0
0 0 . . . 0 0

...
...

yn−2 yn−1 . . . y1 0
yn−1 yn−2 . . . y2 y1

 (6)

Note that here ←̂−y ∈ Rn+m−1+n−1 is the vector ←−y ∈ Rn padded with m− 1 + n− 1 zeros and
accordingly the reduced circulant C←̂−y [1 : (m+ n− 1), :] has m+ n− 1 rows.

From (6) we see that we can replace the multiplication of z with the transposed partial Cŷ[1 :
m, :]T by a convolution of z with the reverse ←−y of y and then select the subvector from n through
m+ n− 1 to obtain the adjoint x, and likewise for y:

x = (z∗←−y) [n : (m+ n− 1)]
y = (←−x ∗z) [m : (m+ n− 1)]

This result is apperently used already in the training of convolutional neural networks (CNN),
where for the backpropagation of the gradient though a 2D convolutional layer the kernel is rotated
by 180 degrees, thus inverting the order of the filter coefficients in both spatial directions [Bou06].

5.3.4 Kronecker product

The Kronecker product kron is not just interesting and important in itself, but also in that the
repmat operation can be devolved to the Kronecker product.

52

6. Treeprocessing with XML and XSLT for AD and other structural transformations

To handle the Kronecker product in the reverse mode we set up the partial derivative, which is
a sparse matrix, and perform arithmetic propagation. This can be done as follows. Consider the
Kronecker product X⊗Y of two matrices X ∈ Rm×n and Y ∈ Rp×q. The result is Z = X⊗Y ∈
Rmp×nq.

The partial ∂Z/∂X ∈ Rmnpq×mn is a sparse matrix with exactly one non-zero entry per row.
To set up the partial we have to trace were the values in X end up in the result Z. To this end we
create the two adjuvant matrices −→X ∈ Rm×n which is filled with the integers 1, 2, . . . ,mn in the
canonical order and Ŷ ∈ Rp×q which is filled with all ones and compute Z̃ = −→X⊗Ŷ . The values
z̃ ∈ Nmnpq of Z̃ in a vector give us the non-zero column for each row of ∂Z/∂X. That is, we can
obtain the sparsity pattern of the partial by using 1, 2, . . . , nmpq as i-indices, z̃ as j-indices and
1, 1, . . . as the values of a sparse matrix, for example using the sparse builtin.

However, the non-zero entries of ∂Z/∂X are obviously not equal to one in general, but instead
the values of Y , so we are not quite done yet. We know that each column of ∂Z/∂X has pq non-
zeros which together hold one set of the values y of Y , since each element of X is multiplied with
Y . To fill the values y into the partial correctly we sort z̃, and apply the same permutation to the
i-indices. Thus we obtain a reordered sequence of indices of the sparsity pattern were first come
the pq elements that go into the first column, then pq elements that go into the second column,
etc. Finally we repeat the vector y by the required amount of mn times and give that as the list
of values to the sparse builtin, together with the reordered indices.

This procedure efficiently sets up the sparse partial derivative ∂Z/∂X. To produce ∂Z/∂Y we
proceed analogously, with the roles of X and Y swapped. Specifically we fill the adjuvant X̂ with
all ones and the adjuvant −→Y with 1, 2, . . . , pq so we can trace where the values of Y are sent to in
Z = X⊗Y .

The approach presented here to efficiently set up the partial derivative of kron is very similar
to the idea employed to handle indexed expressions and assignments, as discussed in Section 3.3.

6 Treeprocessing with XML and XSLT for AD and other
structural transformations

The decision to use XML and XSLT for the adjoint code generator was motivated mainly by
considering that the task at hand consists of tree processing for the most part. Thus, we resolved
to using XML and XSLT because they are able to represent and transform trees directly, translating
our actual problem instance to XML in the first place. AD has also been done with XSLT before
for the CapeML [Pet12; Pet07]. In that instance the input problem was given in XML already,
since CapeML is an XML dialect. In the adjoint code generator for ADiMat we explicitely chose
XSLT as the processing language and hence create an XML export in the first place.

To name one feature of XML that is very helpful in our development but is hard to find or
emulate in most other langauges, consider the XML namespaces facility, which provides a means
to logically separate parts of the tree from others. This is particularly useful to attach compiler
messages and analyses information to the tree, which can be done without semantically affecting
the core tree when different namespaces are employed. This feature of XML is discussed in Section
6.1 together with a short introduction to XML, while and XPath and XSLT are briefly discussed
in Section 6.2.

For compiler construction in general we need a means to represent trees. Here XML documents
are an ideal choice, in that the hierarchy of XML elements constitutes an ordered named tree. This
expressive level is not found in most other programming languages, where in almost all cases one
has to resort to pointered structures or other indirect means to represent ordered trees. This is
discussed in Section 6.3, where we shall discover for example that the language R is interestingly
able to represent ordered named trees directly in its native data structure, the named list. This
leaves the question of the most suitable programming language for the intended transformations.
In Section 6.4 we discuss reasons why XSLT is in our view so ideally suited for any kind of tree
processing. This is in our view due to the rule-based processing model and to the literal output

53

6. Treeprocessing with XML and XSLT for AD and other structural transformations

principle, while the sub-language XPath provides concise methods to evaluate selections of nodes
based on filtering and path composition, from a given context node. In addition XSLT pipelines
are in our view a concise method to perform complex tree transformation such as the adjoint code
generation, in particular because the recursive identity transformation is trivially short in XSLT,
yet can be overruled at any point.

Our adjoint code generator is an instance were we first have to create an XML representation of
the input in order to be able to use XSLT for the processing. In the particular case of ADiMat this
was not particularly dificult, since whenever a structured representation is available in memory,
then all we need is a recursive function which traverses the structure and prints XML markup. The
resulting markup in this case is called AST XML and presented with some examples in Section
6.5.

In other instances the need to first obtain an XML representation of the input may be a
significant entry obstacle. For these scenarios, we are also actively developing solutions. This is
discussed in the later Section 6.8, were we present two software packages called P2X and R2X
that we have recently developed that both explicitely address this general issue. P2X can parse
any structured text to XML and R2X translates between XML and named lists in R directly.

We also discuss techniques for implementing XSLT pipelines. In more general terms, XSLT
pipelines are an instance of generative programming. In a scenario where XSLT stylesheets, XSLT
pipeline definitions, XML schemas and our actual data are all XML, we can envision complex
processing networks were various such components are dynamically generated, transformed and
updated, all with XSLT, and all this even in-memory when we use a glue language with XSLT
support, such as MATLAB, JavaScript, or R. A sensible structure is essential for such scenarios.
In ADiMat we basically use plain XML lists of XSLT stylesheet URLs as pipeline definition, but
with a small preprocessing step that statically unrolls several closely related pipelines each from
tree-formed definitions. These issues are discussed in more detail in Section 6.9.

We also wish to discuss validation in XML briefly, although it is not used in our adjoint code
generator and its development. First of all, we think the crucial advantage of XML over the
previous attempts of markup languages is of course that it achieves universal readability by using
the concept of named parenthesisation to define well-formedness [Cho02]. This means that a
simple generic parsing algorithm exists that can read XML document even when all the element
and attribute names are unknown. This means that a XML document can be parsed withour prior
knowledge and thus provides a generic method to represent named ordered trees. This strategy
is mirrored by the JSON notation on a lower syntactical level. When on top of that, additional
constraints are placed on the document, that is, on the names of elements and attributes, this
is called in XML terms validation against a certain grammar, usually called or XML schema or
document type.

Within a single XSLT pipeline, validation in every single step is most probably superfluous
and even futile. Instead, a concept that is very helpful in the controlling of a desired tree structure
has in our experience turned out to be the use of normalization operations, that take the form of
idempotent filter steps. We would like to discuss the relation of validation to these normalization
operations. Basically, for every post condition that such a filter establishes, we can allow our
tree to deviate from the standard form, for we can very flexibly re-establish said postcondition
whenever that should be required, by applying the filter. To specify a validation procedure, a
tree in AST XML could be declared valid if it is valid after performing a list of normalizations,
including the pruning of subtrees from other namespaces. Thus, while we do not practically use
such a validation procedure, these reasonings reveal the importance of having an arsenal of suitable
renormalization operations, as discussed in Section 6.11.

6.1 XML terms and definitions
XML 1.0 is a markup language derived from SGML [Bra+00]. Compared to SGML, the main
change decided for in XML was to make XML redable without a knowledge of the document
structure, the so called document type. The only requirement is that XML documents are well-
formed, that is, the so called XML markup is a balanced named parenthesisations of starting

54

6. Treeprocessing with XML and XSLT for AD and other structural transformations

(<a>) and closing tags (). For this form of markup there are efficient parsing algorithms. A
document type, which is not required in XML, basically defines which tag names we can expect to
occur, that is, it is basically a grammar for XML documents. The process of validation against
document types is available in XML as an optional feature [Wik19b].

After parsing, the parser provides an in-memory representation of the XML document, which
is an ordered tree of XML nodes. The root node at the top has among its children exactly one
XML element node, the document element. Each XML element has an ordered list of zero or more
arbitrary nodes as children or child nodes. Nodes other than elements are text(), comment() and
processing-instruction(). These nodes cannot have children, and hence occur only as leaves
in the tree. For our purposes we only need text() nodes or text nodes.

An XML element has in addition a set of attributes, which is a named map of string values.
Attributes are considered as nodes, but are usually considered to be set apart of the tree, so
e.g. a subtree, a list of elements and its descendants, would not normally be meant to include
the attributes of the elements. However, any element is always thought of as carrying its set of
attributes. This is modelled in XPath by the special axis attribute::, with the short-cut @, such
as in adm:binary/@op.

The tree of XML nodes is accessible by a common programming API, the so called Document
Object Model (DOM) API [W3C04; Kes20]. This provides functions to navigate the tree step by
step, and to create, insert and remove individual nodes, together with a set of utility functions for
basic searching of nodes.

XML elements and attributes have a node name. It can include most unicode characters,
including - and :, but must not start with xml, a -, a . or a digit. The colon : in an XML
name is special in that it distinguishes a name prefix. A name prefix must be bound to an XML
namespace, which is in turn identified with its so called namespace URI [W3C09]. This binding
must happen at the element that introduces the prefix via a special XML namespace declaration,
which uses special attributes starting with xmlns, as in

<x :br xmlns:x=" h t tp : //www.w3 . org /1999/ xhtml " />

This element shown has the name x:br, which has the name prefix x and the local name br. The
name is in the namespace http://www.w3.org/1999/xhtml. This element is identical to

<br xmlns=" h t tp : //www.w3 . org /1999/ xhtml " />

which uses the xmlns attribute to bind the default namespace to the same namespace URI. In
XPath or XSLT we have to refer to the same namespace, but we can use any prefix to bind it to,
for example set the attribute xmlns:xhtml in an xsl:stylesheet

<x s l : s t y l e s h e e t xmlns : x s l=" h t tp : //www.w3 . org /1999/XSL/Transform "
xmlns:xhtml=" h t tp : //www.w3 . org /1999/ xhtml "
version=" 1 .0 ">

When we then use xhtml:br in the XPath expressions within that stylesheet either of the shown
elements would be matched by that.

In the DOM API, the fact that XML namespaces were added later in the specification process
of XML is reflected by the fact that many functions will not consider namespaces, and have siblings
with the suffix NS, which do, for example getElementsByTagName and getElementsByTagNameNS.
In XSLT and XPath however, it is not possible to ignore the namespace bindings, that is, any
name in XPath matches only elements or attributes of the same name and namespace. One must
however use a name prefix, that is, a name without name prefix in XPath always refers to a name
from the default namespace. The same it true for attributes, any attribute without a name prefix
are in the default namespace.

We call the tree of elements of an XML document, discarding any other nodes, the element
tree. We call the XML namespace of the document element the core namespace. We call the
XML element tree made up of all connected elements from the core namespace the core tree of
the document. Any remaining substrees will consequently then have an element from some other
namespace at their root and are attached as leaves to the core tree.

55

6. Treeprocessing with XML and XSLT for AD and other structural transformations

6.1.1 XML documents with the leaf text property

We think is worth defining a subset of XML documents here, namely those that are of the leaf-text
form. While text nodes are always leaves, by this definition we refer to documents where all text
nodes are attached to elements that are leaves in the element tree. This means that text nodes
never occur as siblings to elements, and that they have a element which contains them as their
only child. The fact that any text node that we attribute some meaning to is wrapped in its own
element means that we can ignore any other text nodes, and this in turn means that we are free to
introduce such text nodes, in particular text nodes containing only white space for pretty printing
with indenting.

In our experience, this is a very broad definition. Almost any XML that is devised for technical
purposes will use a leaf-text form. An example for documents that are not leaf-text in general is
HTML, as shown in the example

<p>This must be <i>emphasized</i>.</p>

There is of course still a simple procedure to make such documents leaf-text, continuing the
example that could result in

<p>This must be <i>emphasized</i>.</p>

However, it is still not without consequences to insert indentation whitespace into this leaf-text
form of the HTML. For example, any amount of white space between </i> and would
result in a single white space character between the word emphasized and the full stop character
in HTML rendering.

Pretty-printing an XML document with indenting, each tag in its own line, with indenting
according to the depth in the document, is a very simple and effective way to visually represent
its structure. However, XSLT processors will often refrain from inserting the additional whites-
pace that is required for such indented pretty-printing, since they are not generally free to do
so, to insert additional text nodes into the output tree. Even with setting the XSLT attribute
xsl:output/@indent to ’yes’, when new elements are generated in the output tree, these are often
without any whitespace, several tags on a single line, and hence difficult to read.

Hence, it is helpful when we work with XML documents that are of the leaf-text form, since
these can be indented without problems. For pretty-printing and indenting leaf-text XML markup
we can provide a very simple procedure:

1. Textually replace in the XML markup text all occurences of >< with >\n<, that is, insert a
newline character whereever two XML tags – opening or closing – are adjacent.

2. Pretty-print the resulting XML with indenting by some other means, such as the command
indent-region in the Emacs editor [Sta15] or using the command tidy -asxml [Rag20] in
the Unix console

This simple procedure bound to a key macro has proven invaluable and even indispensable when
debugging intermediate states of XML pipelines. We have to assume that in the original markup
any empty element was written as <x/> and not as <x></x>, of course, or else our procedure would
insert a text node where there is none to x. However, we usually can assume the first form, and
hence our procedure will never add whitespace to any leaf element. Where ever there is any text
node, there cannot be the sequence ><.

As an example consider the XML of the AST XML when it is written as compactly as possible,
as shown in Listing 12.

<func t i on xmlns=" h t tp : //www. sc . rwth−aachen . de/ns/adimat "><outvars><var><id
id=" 0 ">z</ id></var></ outvars><id
id=" 3 ">f t imes2</ id><param− l i s t><var><id id=" 1 ">x</ id></var><var><id
id=" 2 ">y</ id></var></param− l i s t><statement− l i s t><binary op="="><var><id

56

6. Treeprocessing with XML and XSLT for AD and other structural transformations

id=" 0 ">z</ id></var><binary op=" ∗ "><var><id id=" 1 ">x</ id></var><var><id
id=" 2 ">y</ id></var></binary></binary></statement− l i s t></ func t i on>

Listing 12: An XML document without any indenting whitespace. The document structure is
difficult to discern

Remember that in some XML scenarios it would be wrong to alter this document by indenting
it. Indenting adds text nodes, or adds whitespace to text nodes, which may alter the semantics of
the XML document. When we know however, that the document is of the leaf text form, then we
may safely apply our procedure. After the first step, the document markup is now spread across
several lines, one tag or one leaf element per line, as shown in Listing 13. When we run some
XML pretty printing program on the result, like the shell filter command tidy -q -xml -indent
or xmlstarlet fo we obtain markup where each tag is preceded by an amount of whitespace
according to its depth in the tree. In such a form the structure of even relatively large XML
documents is clearly visible, as shown in Listing 14.
<func t i on xmlns=" h t tp : //www. sc . rwth−aachen . de/ns/adimat ">
<outvars>
<var>
<id id=" 0 ">z</ id>
</var>
</ outvars>
<id id=" 3 ">f t imes2</ id>
<param− l i s t>
<var>
<id id=" 1 ">x</ id>
</var>
<var>
<id id=" 2 ">y</ id>
</var>
</param− l i s t>
<statement− l i s t>
<binary op="=">
<var>
<id id=" 0 ">z</ id>
</var>
<binary op=" ∗ ">
<var>
<id id=" 1 ">x</ id>
</var>
<var>
<id id=" 2 ">y</ id>
</var>
</binary>
</binary>
</statement− l i s t>
</ func t i on>
Listing 13: An XML document without any indenting whitespace, but every tag or leaf element
printed on its own line

<func t i on xmlns=" h t tp : //www. sc . rwth−aachen . de/ns/adimat ">
<outvars>
<var>
<id id=" 0 ">z</ id>

</var>
</ outvars>
<id id=" 3 ">f t imes2</ id>
<param− l i s t>

57

6. Treeprocessing with XML and XSLT for AD and other structural transformations

<var>
<id id=" 1 ">x</ id>

</var>
<var>
<id id=" 2 ">y</ id>

</var>
</param− l i s t>
<statement− l i s t>
<binary op="=">
<var>
<id id=" 0 ">z</ id>

</var>
<binary op=" ∗ ">
<var>
<id id=" 1 ">x</ id>

</var>
<var>
<id id=" 2 ">y</ id>

</var>
</binary>

</binary>
</statement− l i s t>

</ func t i on>
Listing 14: A leaf-text XML document pretty-printed with typical depth-based indenting
whitespace. The document structure is immediately appearent

6.2 XPath and XSLT terms and definitions
The query language XPath is use to select values from an XML document, value types being
nodeset, string, number and boolean. The core operator is the slash ’/’ which selectes nodes
given by the RHS expression for each node in the nodeset that is the LHS expression. Nodesets
are always in document order. Nodesets can be converted to a string value if necessary. This
means to take the first node in the node set and build its string value. For an element this means
to concatenate all text nodes found in the element subtree. Strings and thus also nodesets can
also be converted to numbers as necessary as per the IEEE-774 standard. XPath expressions that
select a nodeset and do not start with a ’’ are called /relative and are evaluated with respect to a
given context node.

In XPath we must use a namespace prefix to access whatever element by name, which is in a
namespace, and can use a prefixed wildcard to select all elements from some namespace, so for
example xhtml:br matches a HTML5 br element when xhtml is bound to the HTML5 namespace,
while br matches only br elements from the default namespace. The wildcard xhtml:* matches
any element from the HTML5 namespace, while the wildcard * matches any element from any
namespace.

XSLT is a rule based, turing complete processing language for XML documents, that allows
general purpose transformations of XML documents. The first version XSLT 1.0 and the slightly
enhanced XSLT 1.1 is probably still the dominant version of XSLT in use. The later revisions XSLT
2.0 and XSLT 3.0 do not appear to have gained widespread use, the Saxon processor being the
most prominent processor that implements the later XSLT 2.0 and XSLT 3.0 standards [Kay20].
This lack of practical relevance is in our view due to XSLT 1.0 being a very well designed language
which has a very balanced set of functionality that due to its flexibility leaves little to be desired
in terms of features, and yet is defined by a relatively concise and readble standard. What is
often considered the most important added capability of XSLT 2.0 over XSLT 1.0, namely the
reprocessing of output trees, is obviously also possible by chaining multiple XSLT 1.0 stylesheets
in a pipeline, which arguably also leads to more readable and flexible XSLT code. Another very
interesting and obviously attractive feature of XSLT 2.0 is the posibility to accept also other

58

6. Treeprocessing with XML and XSLT for AD and other structural transformations

structured text other than XML, such as CVS, or relational data bases as input. As to structure
text, our software package P2X is also able to translate structured text to XML, cf. Section 6.8.2.

Current development of XSLT 1.0 and XSLT 1.1 processors is largely dormant due to several
high quality and feature complete implementations being available from early on, with Apache
Xalan [The99; The11; Leu04], libxslt [Vei03] and Saxon [Kay01b; Kay01a] being the most widely
used. Some work is being done with regards to improving the performance, for example using early
exit when an expression like following::*[1] is evaluated [Wik20h]. In our view, further room
for improvement might by found in the area of parallel computing. In more complex scenarios
parallelisation may also be applied on the higher level of processing networks or transformation
servers, but certain large scale XML documents and their transformation may still benefit from
parallelisation internal to the XSLT processor. According developments have been taking place
in the Saxon project [Kay15]. Using OpenMP 3.0 tasks to appears to be an attractive option
to implement parallel processing in the XSLT processors written in C and C++, in our view
[Ope08; Pas09; Ayg+09]. Another angle is to reduce the memory requirements by avoiding to load
documents entirely and process them with streaming techniques [Kay10]. Some recent research is
also done on benchmarking XSLT processors [MHM14].

XSLT processes one XML document against a given set of rules defined by one XSLT stylesheet,
producing one XML or plain text document as output. A stylesheet is itself an XML document
which basically contains a list of xsl:template elements. Stylesheets can be structured into
multiple files by using xsl:import and xsl:include. Templates have a @name or a @match
attribute or both.

Templates are called either by xsl:apply-templates according to their @match attribute, or
by xsl:call-template according to their name. When a template is called, any child nodes it
contains are emitted into the output tree, while child nodes from the xsl namespace are processed.

A template is called either by xsl:apply-templates by finding matching templates for the
nodeset defined by the @select expression or by xsl:call-templates with the @name attribute.
The @select expression defaults to *|text(), so child nodes are selected. It is also possible to
select other nodes, and to travese the tree in other directions, of course. When a template is
called with xsl:apply-templates the context node is moved to each selected node in turn, and
the template matching best is called. The templates have some simple precedence levels which
controls their selection by xsl:apply-templates, which is imputed according to their match
expressions. Basically XPath expressions with a wildcard * and with the nodeset union operator
| get a malus while XPath expressions with a bracked filter expression are given a bonus on the
basic precedence level. From several matching templates of equal precedence, the last one in the
stylesheet is called. So, when several templates with a @match attribute of the form name[xyz] are
used, where name is identical but the filter expressions are different, then the programmer must
see to that the more specific filter expressions are place after the more general ones, for these all
have the same precedence. For example:
<xsl:template match="myelem [@attr1 >0] ">

Case 1 : <xsl:value−of s e l e c t=" . " />
</xsl:template>
<xsl:template match="myelem [@attr1>0␣and␣@attr2 >0] ">

Case 1+2 : <xsl:value−of s e l e c t=" . " />
</xsl:template>
<xsl:template match="myelem [@attr1>0␣and␣@attr2>0␣and␣@attr3 >0] ">

Case 1+2+3 : <xsl:value−of s e l e c t=" . " />
</xsl:template>

In this example the increasing specificity is ease to see, but depending on the actual filter
expressions, it may require some thought.

Both xsl:template and xsl:apply-templates can also have a @mode attribute, which is
simply a name. A xsl:apply-templates with some mode only matches templates with the same
mode. Thus, for each mode a separate set of templates is created, empty except for default
templates. The default set of templates for any mode used, including the default mode, is to
recurse through the element tree and to emit text nodes:

59

6. Treeprocessing with XML and XSLT for AD and other structural transformations

<xsl:template mode="mymode" match=" text () ">
<xsl:value−of s e l e c t=" . " />

</xsl:template>
<xsl:template mode="mymode" match=" ∗ ">

<xsl:apply−templates/>
</xsl:template>

For this reason a frequent idiom to introduce a new mode is to disallow this text output by
overriding the default template, or else text nodes from the tree will be emitted as soon as some
element is not covered by some match expression of the template set.
<xsl:template mode="mymode" match=" text () " />

Although XSLT basically processes one XML document and produces one XML document as
output, any number of further documents are accessible within XSLT via the XPath document()
function. The resulting side loaded documents can be bound to variables, they can be selected
from with XPath and they can processed just as the input document with xsl:apply-templates.

XSLT 1.0 however distinguishes between input documents and output nodes that it has gen-
erated already. The latter can also be captured in xsl:variable or passed as xsl:param, for
repeated output with xsl:copy-of for example, but they cannot be queried with XPath or pro-
cessed with xsl:apply-templates. This is a frequent stumbling block for beginners, who are
used to reprocess intermediate results in other languages to achieve some aim. XSLT 2.0 provides
reprocessing of output trees. With XSLT 1.1 it is possible to generate multiple output documents
by using the added xsl:document element, which in some situations is a very useful feature. This
together with the document() function also provides a loophole to reprocess output trees in XSLT
1.1.

However, the same effect as reprocessing output trees is obviously available by chaining XSLT
stylesheetes in a pipeline for consecutive transformations of a document. This requires an external
glue language to control the overall XML transformation, but it is a simple task to create a
corresponding framework and the step to even more complex XML processing networks is also
close, as we describe in Section 6.8.

6.2.1 The literal output principle of XSLT

Another very considerable advantage of XSLT over other languages is in our view and experience
the concept of literal output. Very simply, any content that is placed inside an xsl:template
element is output literally whenever the templates is called. Except for the three characters (<, >,
and &) that must be escaped in XML, anything else is just typed in literally.

Regarding text output we have the very sensible rule in XSLT that text nodes in the stylesheet
with only whitespace produce no output, which means in particular that the XSLT itself can the
freely indented. Text in xsl:text elements is however output without modification.

This literal output concept includes specifically any XML elements, including their namespaces.
Namespace prefixes in a stylesheet are also defined as per the usual XML rules. During the
template processing any XML inside the xsl:template elements are also output literally. Any
XML tags must obviously be well-formed as otherwise the XSL stylesheet itself would not be
well-formed and thus not XML and unreadable. Hence it is almost impossible to produce output
with XSLT that is not well-formed XML.

XML elements that are from the XSLT namespace are obviously treated specially in the
template processing, namely, they are processed as per their respective semantics. For exam-
ple xsl:apply-templates matches the current set of templates to the selected nodes and that
output nodeset is inserted at the point of the xsl:apply-templates element.

XSLT can produce either XML or plain text output. In an XSLT processing chain there
is usually at most one XSLT that produces non-XML text output, and this is the last. One
should briefly mention that certain characters are not part of XML and hence binary data cannot
be generated with XSLT directly, so a binary filter program would minimally be required for
postprocessing, if binary data shall be generated.

60

6. Treeprocessing with XML and XSLT for AD and other structural transformations

In our experience any kind of text output can be produced with XSLT with relatively little
effort. In our view, this is due to the literal output principle. This invertes the semantics layers,
if we may call it that way, with respect to all other programming languages. Usually what we
type in a certain programming language as code is statements and definitions in that language.
With any language we can of course instruct the interpreter or language runtime to output text.
However, this normally means that we at the least put our output into a string literal in that
language. Consider the famous "Hello World" program. This act already means that we have
to escape quote characters in any text, for example "Hello \"World\"" in C. Then we have to
call a suitable function to effect the printing of the output, such as fprintf. Of course, a single
static string literal is not very flexible, so we usually have to compose the output string within
the language from many pieces using many function calls, including those which specifically deal
with text formatting, such as sprintf.

In XSLT however, this logic is inverted. The primary plane of text content, so to say, is reserved
for the user level output. There are no explicit print or write statements that need to be called,
output is just what is inside the xsl:template elements, be it text or XML elements. Only XML
elements from the XSL namespace are processed according to the rules of the language.

6.3 The expressive level of XML compared to other data structures

Table 2: The expressive level of languages and their most common data structures
Language Data structure Repeated names Order preserved Namespaces Nesting
C/C++ Array – Yes – Yes
C++ STD Map No No No Yes
Python Dict No No No Yes
JavaScript Assoc. Array No No No Yes
C++ STD Multi-Map Yes No No Yes
MATLAB Struct No Yes No Yes
R List Yes Yes No Yes
XML Elements Yes Yes Yes Yes

Attributes No No Yes No

In Table 2 we detail the expressive level of some common programming languages and their
most common data structures. For this list we do not consider composite user level data types,
such as classes or certain frameworks, but just the data types that are native to the languages.
For example, the staple data structure of many interpreted languages is probably the dictionary
or associative array. For these we exemplarily list Python and JavaScript in the table, but other
examples are PHP, Perl, the Unix shell scripts, and many others. These dictionaries have in
common that the order of elements is not preserved and moreover names may not occur repeatedly,
there can be just one entry for each name. With these characteristics they are on the same level
with XML attributes, although the latter cannot be nested, of course. The MATLAB language
features the struct data type, which differs slightly, in that the order of elements is preserved.

In the case of the C language, the apex data structure is probably the plain array as defined
for example by int x[100];. A C array preserves order but has no names at all, so we list it at
the top of the table. A dictionary data type is available in C++ with the std::map container from
the Standard Template Library, which can be used with strings as map keys. Repeated names or
keys are possible with the std::multimap container.

A notable exception in this list is the R language. The difference is subtle, but crucial. The
R language features a list type where the elements can be assigned names, which may occur
repeatedly. This entails a one-to-one equivalence between named lists in R and XML documents,
or more precisely between named lists in R and leaf text XML documents.

When we now consider the problem of representing an ordered tree in the different languages,
as detailed in Table 3, we must use some level of indirection when that is not possible directly. For
example in C or C++ we must devise some dynamic pointered data structure that represents our

61

6. Treeprocessing with XML and XSLT for AD and other structural transformations

Table 3: How an ordered name tree could be represented in different languages, not considering
namespaces and attributes

Language How to represent a named ordered tree
C++ Pointered structure
Python, JavaScript Dictionary with tuples name and list children
R Named list
XML XML document

tree. When a dictionary data type is available we could create a nested structure of dictionaries
with two entries name and children, where the first always holds a string and the second a list.
This is what our P2X parser does to output its tree directly to MATLAB or JSON [Wil13b],
as described in Section 6.8.2. With this technique we can even represent text nodes in between
elements, not just leaf-text trees. We could also use in either language the DOM API, but this
obviously also a level of indirection.

In R we are in a more comfortable position, a simple generic tranformation can be devised
between named lists and leaf-text XML documents. A recursive named list structure in R corre-
sponds to the element tree of an XML document. We map the non-list leaf elements to text nodes
in XML and can thus identify leaf-text XML documents with named lists in R. On top of this,
R has an attribute system that is entirely equivalent to XML attributes. This striking structural
equivalence is implemented by our new tool R2X to directly translate between R and XML data
structures without the need to go through the DOM API. This is described in more detail the
later Subsection 6.8.3.

6.4 The expressive level of XSLT compared to other languages

Table 4: How an ordered tree structure can be accessed or processed in different languages
Language Access a named ordered tree Process named ordered tree
C++ Recursion Recursion
Python, JavaScript Recursion Recursion
R Recursion Recursion
XML XPath XSLT

Once we have a representation of a named ordered tree loaded in memory in our chosen repre-
sentation, we most obviously work with the tree and transform it as desired, on in simpler settings,
extract information from it. With indirect means of accessing our tree, we are bound to use se-
quences of simple operations that have to be arranged in software structures that will probably
have several access and convenience layers for any non-trivial use cases. In C++ for example,
suppose we are given the pointer to an assignment node and tasked to find all active variable
occurences on the RHS. We will have to define some recursive little algorithm that traverses our
subtree to find the variables in question. For such common little search tasks we will probably
devise an software abstraction to generically traverse our tree and apply some predicate or oper-
ation to each node. However, consider our example further. An active occurence is never inside
an index expression, so we need more tools, such as filtering, or different recursive traversals, etc.
Then we finally express our actual intention as a programmer through these layers of abstraction.
This situation is denoted in Table 4 with the entry Recursion. It is no different in Python or
JavaScript, although both have functional programming means to process lists, such as the map
function.

Even in R, while we can seamlessly represent named ordered trees as named lists, working with
these structures is not as seamless. For example, the simple access operators in R will select just
the first element of a given name. And even though we have in addition to lapply, which is the
map function for lists in R, also rapply for nested lists, we will still need recursive programming

62

6. Treeprocessing with XML and XSLT for AD and other structural transformations

to transform trees arbitrarily. For example, the function rapply can still only produce one output
for each leaf input item and also cannot modify the list hierarchy.

When working with XML, we use XPath and XSLT to access and manipulate tree structures
directly. XPath is used for selection of nodes [CD+99] and as such also a subset of XSLT. XSLT is
a rule based declarative language for XML processing [Cla+99]. Its core features are, in our view,
the rule based processing and the concept of literal output. This allows us to specify processing
steps which perform the identical transformation very concisely. Then, basically we just have to
add those rules needed to effect the intended change.

By arranging XSLT processing steps in a pipeline, we achieve a powerful method for tree
transformation in general and for our adjoint code generation in particular.

In our view, XML is only ever easy to handle when using XSLT. For example, the easiest way
to implement a way for XML to be available in JavaScript, is in our view an XSLT stylesheet
that emits JSON. In other interpreted languages one may also generate a literal expression of
the desired structure with XSLT, to be evaluated with the uniquitous eval function. When some
information is to be extracted from XML, one should use XSLT to compute the information
and then, possibly in a second XSLT, emit the answer in JSON format. The only alternative
is to step node by node through the document with the DOM API, which should be done only
when necessary. The failure to realize this by comparing the expressive level of XML and XSLT
and other languages has probably left to the demise of XML in the web applications, and its
replacement by JSON. In our view, this is however unjustified, and the future of the web lies in
using JavaScript as a glue language to orchestrate XSLT transformations that are applied to the
so called DOM tree, which in this context refers to the DOM document of the web page that is
shown in the browser, or to other XML input data, to produce HTML subtrees to be inserted into
the DOM tree. Instead, wave after wave of JavaScript libraries are written to manage the requried
tree transformations. When we see it this way, sooner or later we are sure to see a resurgence
of XML and in particular XSLT in the area of web applications. All the foundations are layed,
in particular XSLT processing is available via JavaScript APIs in all major browsers. Our XC
project, presented briefly in the later section 6.10 is an example for such an approach.

In the following Section 6.5 we also describe in more detail how we use XML for AST repre-
sentation. In the Sections 6.6 and 6.7 we describe in more detail how we use XSLT and XSLT
pipelines for AST transformation. As an outlook we present generic techniques for using XML and
XSLT pipelines for problem solveing, in particular two simple tools facilitating the entry into the
XML world from other structured data representations, namely P2X and R2X, which we already
mentioned, in Section 6.8.

6.5 AST representation in XML
In our adjoint code generator, an XML document represents the abstract syntax tree (AST),
in a form that corresponds to the tree structure commonly used in most compilers. This XML
document uses a particular format that we call AST XML. The XML is printed from the existing
ADiMat software by a recursive printing function that emits the XML markup. Some other
information is also provided by already existing analyses in the ADiMat forward mode processor,
in particular the activity analysis, and included in the XML output.

In order to benefit as much as possible from the XSLT processing we use a tree-based form
to represent the parsed code and also the transformed code, as these can readily be represented
in an XML document. Fortunately, this is what ADiMat already does in the forward mode code
generator.

We would not particularly recommend working with the also commonly used graph formats for
compiler construction like basic block graph, variable dependency graph, function call graph, etc.
in an XML context. While it is obviously possible to encode a graph format in XML, for example
the often used form of node and adjecency lists, there is not really a benefit to be gained from
prepresenting the node and adjacency lists in XML. An alternative to represent graphs in XML
would be to use spanning trees, but this also is not ideal. More generally speaking, graphs are a
more general data structure than trees, and for this reason one will be working with indirections,

63

6. Treeprocessing with XML and XSLT for AD and other structural transformations

no matter whether one works with an procedural language on the node and adjacency lists of a
graph or with a tree processing language like XSLT on node and adjacency lists or spanning trees
in XML format. The ideal tools for working with graphs would be a graph data format and a
graph processing language. These do exist [PF71; Mal+10; Hon+14; SW13], but do not appear
to have gained much maturity or popularity as of yet. Hence, we resolved to use tree structures
for our task as much as possible. This is different to other AD projects, were the source code is
often represented by a graph of basic blocks, and expressions are also often represented by graphs,
such as OpenAD [Utk+08b], which uses the XAIF XML format [HNN02], also for adjoint code
generation [Nau+04; Nau+06]. So, while it is understandable to prefer graphs over trees as the
fundamental data structure when constructing a compiler framework, given that graphs are a
higher-level data structure than trees, we think it is also reasonable to settle for the lower-level
choice of trees given that we have means to represent and process trees directly.

XML namespaces are used to separate core tree and annotations: usually algorithms on the
core tree when expressed in XSLT will be undisturbed by whatever additional leaves from other
namespaces are in the tree. When tree restructuring is done, such additional leaves may be lost
quite easily, but this can also be avoided with some consideration. Typical useful annotations are
results of code analyses, more generally any precomputed information, but also compiler notes,
warnings and error messages, which can simply be inserted into the tree whereever they arise.

Abstractions are XML elements that are normally not part of the AST, but from the core
namespace and part of the core tree, may represent entire sub trees of expressions or code. They
are often created on an ad-hoc basis, simplifying certain processing steps. Again, XSLT algorithms
working on different levels of the tree can easily avoid having to know about these, but nevertheless
preserve them. Certain postprocessing optimizations which are concerned with these language
elements may become more concise since they can reference them by their name. In the end,
either the pretty printer will have to be enabled to handle these elements or we define a devolving
postprocessing step that expands them back to common language elements, or do both. Examples
for abstractions that we employ are for the frequent idioms of adjoint code, like push and pop
instructions, adjoint increments, adjoint initializations, adjoint reductions, etc.

The second, related set of restrictions is concerned with the namespaces of the element names.
There are several namespaces that we use in AST XML. One of these is the so called core names-
pace, while we call the others auxilliary namespaces. All the information required to reconstruct
the program code is represented by the core tree, while elements from the auxilliary namespaces
may be attached to this tree at any level, but they can easily be ignored, or more precisely, al-
most any given XSLT algorithm that operates on the core tree will automatically ignore elements
from other namespaces, which is a again a very simple yet comprehensive exercise in defensive
programming. This is due to the rules for name matching in XPath, which we discussed already.
Only using the plain wildcard * this will match also other namespaces. So we have the overall
convenient behaviour that the recursive identity transform rules copy all AST tree nodes including
elements from other namespaces, but as soon as we start refering to specific nodes, this will only
match elements from the desired namespace.

We identify two kinds of restrictions or structural invariants on the XML that we work that
with for this compiler construction application. Both are structurally similar. The first regards
text nodes, namely, we define our tree to be in the leaf text form. In AST XML the set of elements
that contain text nodes is quite small, these are namely var, id and literal. The first two are use
for any kind of identifiers and the second for both number and string literals.

Consequently, any existing transformation will almost certainly work unchanged irrespective
of what auxilliary elements are attached to the tree. Only if a certain transformation requires the
attached information it can refer to it by knowing name and its namespace. Thus any kind of side
information can be attached to the tree at any stage to be used at some later stage in the pipeline.

6.5.1 XML AST elements and namespaces

The following elements are used in the upper level of the AST XML:

64

6. Treeprocessing with XML and XSLT for AD and other structural transformations

adimat this is the top level element

master-tree this element is child of adimat and contains the actual AST

The AST inside the master-tree may be either a list of statements or a list of functions, or
both. On the AST level we use the following elements:

function-list list of function elements

function defines a function, with fixed list of four or five children: id, param-list, outvars,
statement-list, possibly followed by function-list

statement-list list of expressions, assignments, or control flow elements

for control flow element, with fixed list of three children: id, an expression, statement-list,

while control flow element, with two children: an expression and statement-list

break control flow element

continue control flow element

if control flow element, with fixed list of two or three children: an expression, statement-list, and
possibly else or elseif

elseif control flow element, with fixed list of two or three children: an expression, statement-list,
and possibly else or elseif

else control flow element, with one statement-list

switch control flow element, with list of case, possibly followed by otherwise

case child of switch with an expression and statement-list

otherwise child of switch, with one statement-list

From the expression level downwards we use the following elements in the main namespace:

binary binary operator, with two children, attribute @op contains literal operator, such as = for
assignments, + for plus, * for mtimes, etc.

unary operator, with one child expression, attribute @op contains literal operator, such as, +
for uplus, ~ for not, etc., but @op may also be (), [], or {} to represent a parentheses
expression

sum represents addition and subtraction with one or more children op

op child of sum with attribute @sign and a single expression as child

call function call, with id, param-list

param-list function call arguments, with list of expressions

row-list for matrix literals, as child of unary with @op set to [] for a literal matrix or set to {}
for a literal cell array, with list of item-list as children

item-list child of row-list, with list of expressions

literal for number or string literals, with single text node

Then we have storage expressions that are in turn a subset of value expressions, and thus a
further level of the AST tree. They may occur on the LHS of an assignment and they are made
up of

65

6. Treeprocessing with XML and XSLT for AD and other structural transformations

array array access, or indexed expression, with two or more children: a storage expression, param-
list, followed by zero or more cell-index

cell-index index in cell array access, with single child param-list

struct-ref for a structure reference, with two children, a storage expression and id

dyn-struct-ref like struct-ref but second child may be a general expression

var variable, either id or a single text node

As a utility element we have

id identifier name of a function, for loop variable, function name, or variable, with single text
node

param-list As child of function represents function arguments and has a list of zero or more var
elements, as child of call or array represents function call or index arguments and has list of
zero or more expressions

outvars Output variables of a function, list of zero or more var elements

A few notes regarding the structural arrangement of these elements and how they are used to
represent the AST of the MATLAB code are in order.

The function-list under master-tree may contain one or more function elements. These are
the functions listed in a MATLAB source file, the first being the one that can be called by the
name stem of the source file while the others are so called sub functions that can be called only be
called by the first. When multiple MATLAB source files are processed by ADiMat, these are also
listed under this function-list. The function-list under function may contain zero or more nested
functions.

Most of the elements are provided with attributes @line and @column and the function element
in addition has the @file attribute for error messages with a reference to the exact place in the
source code. In the XSLT pipeline, when an error message is composed we use the closest of each
of these attributes found from the location in question searching upwards in the AST.

The representation of branches with nested if, else, and elseif elements is certainly complex
and a prime candidate to be canonicalized. We would advertise the form that is also used in XSLT:
an if element for single branch conditionals and choose, with when and possibly one otherwise
children for multi-branch conditionals. However, the reason for using this particular structure
is that it comes out of the ADiMat parser in this form and the handling of the control flow in
reverse-ad.xsl was done in the very early stages of the development, when we did not use the
technique of pre- and postprocessing as much as we would do in hindsight. There are basically just
two instances were we need to explicitely handle these structures in detail: One is the adjoint code
generator in reverse-ad.xsl and the other is the source code generator to-source.xsl. In each
we need to spend a couple of additional template modes to deal with this branch representation
that would not be needed if we used a simpler form. This shows among others, one thing: the
XSLT code that was developed around this rather complex branch representation is quite stable,
so once it was done, there never arose a need to review the case.

Then we are somewhat liberal with the question of what var actually looks like, whether it
contains an id element with the variable identifier or the name as a text node directly. This is
tolerable since id is itself a leaf element. This continues in the processing pipeline were temporary
variables are created by wrapping the id of var elements in tmp elements, and similarly adjoint
variables are created by wrapping the id of var elements in a elements, leaving both to be expanded
to the usual prefixes at a later stage.

As to the binary operators, we also give ourselves some leeway in that a binary element may
have just one child element, i.e. operand, or more than two operands. More precisely, the parser in
ADiMat merges, for example, multiple adjacent multiplication operators into a single node, with

66

6. Treeprocessing with XML and XSLT for AD and other structural transformations

more than two operands. In the preprocessing stage of our pipeline we use a normaliaztion filter
to transform this to a normal form where each binary element has exactly two children, which
simplifies the further processing. The adjoint code generator may then again produce non-regular
binary elements, but there is no need for cleaning these up explicitely, because the source code
generator is also able to handle them directly, which is a straight-forward exercise in defensive
programming that costs no additional effort. This is discussed in more detail with examples in
the later Section 6.6.

The representation of addition and subtraction via the sum element with one or more op
children with a @sign attribute is in our view cumbersome and we would in hindsight rather
represent these AST nodes via a binary element. Similarly to the branching with if the relevant
XSLT code handling theses operations was completetd fairly early in the development and there
was no later need to change it. The adjoint code generator does not emit sum and op however,
but uses binary with @op set to + or - instead.

Another item to discuss are the assignment operators. They are represented in AST XML in
a binary element with @op set to =. In MATLAB an assignment, may only occur at the interface
between the control flow tree and the expression tree. This means they occur always on the top
level of an expression tree, as children of the statement-list elements. The assignment operator
cannot be used in a nested expression or in condition expressions in MATLAB. While in the GNU
Octave dialect it can, just as in may other languages such like C or R, this is not supported by
ADiMat.

On the other hand, the left hand side of the assignement may be made up of a bracketed list of
output arguments. These are similar to the matrix literal expressions, but they specify the storage
expressions where the output arguments are to be stored. This syntax allows to return multiple
output arguments from a function. This means, when unary with @op set to [] occurs on the
LSH of an assignment, it contains a row-list with just a single item-list which may only contain
storage expressions or the ~ placeholder. Such a tree structure is obviously somewhat redundant,
and thus prime suspects to be streamlined using abstract elements

The storage expressions are insofar on a separate level of the tree as regards their first child,
which may be a nested storage expression, for example as in x.abc{2:4}(1:2). The param-list and
cell-index and also the second child of dyn-struct-ref may contain general expressions which define
the indices or field names of the values accessed. In MATLAB an array index with parentheses
may not occur repeatedly in a storage expression, which is why any storage expression with one or
more cell array indices possibly followd by a single array index is represented by a single array in
AST XML. In the GNU Octave dialect the array index may be nested, but this is not supported
by ADiMat. Cell array index and structure references may be nested inside each other however,
as in x.abc{1,2}.def{3}(1), but a possible parentheses index must still come last. For the AST
XML this means, that an array element can only have a var or a struct-ref as the first element.
The struct-ref in turn can have either a struct-ref or a array or a var as its first child, but when
it is an array it will only have cell-index but never param-list children. While interesting, these
structural invariants are not particularly important, at least not important enough to be nailed
down with a formal grammer, in our view.

The more interesting structural invariants of storage expressions are probably that when we
follow the chain of first children of a nested storage expression we only encounter further storage
expressions and always end up with a var element. This means that we can clearly define the root
element of any storage expression, which we call a principal storage expression, and also the var
element found through the first children on all levels, which we call the principal variable.

Storage expressions that are not var can be devolved to a function call to either subsref
of subsasgn depending on whether they occur on the right or left hand side of an assignment.
MATLAB provides a means to define any index expression by means of a nested structure with
certain fields, as described in the subsref and subsasgn documentation. An assignment with a
storage expression on the LHS may be devolved to the plain assignment x = subasgn(x, ...),
where x is the principal variable. Thus, the principal variable is the one variable in the current
scope that has its value changed by the assignment, possibly somewhere down its structure, when it
is a struct or a cell array, or only partially when it is an array, according to the storage expression.

67

6. Treeprocessing with XML and XSLT for AD and other structural transformations

According to the data model that we use in ADiMat, as defined in Section 3.1, the derivative of
a storage expression is in general the same storage expression with the principal variable replaced
by its derivative. Thus, we can simply differentiate

x.abc{1,2}.def{3}(1)

to

g_x.abc{1,2}.def{3}(1)

in the FM code and to

a_x.abc{1,2}.def{3}(1)

in the adjoint code. The only quite subtle yet important exception is when there occur repeated
indices in one of the index expressions. Then, unfortunately, the semantic of the expression is
different depending on whether it occurs on the LHS or the RHS of an assignment. This means
that unfortunately we cannot use the simply rule above in the adjoint code, because any storage
expression would have to switch to the other side of the assignment in the associated adjoint
statement. This particular challenge and the method we use to solve it was discussed already in
Section 3.3.

All the elements mentioned so far reside in the namespace

http://www.sc.rwth-aachen.de/ns/adimat

which is usually bound to the namespace prefix adm. Now we complete the AST XML definition
by allowing elements from any other namespace to be attached to these core trees. In particular, in
the adjoint code generator we use two further namespaces, one for internal compiler annotations
and one for messages. For obvious reasons of simplicity we use the same namespace prefixes
throught the entire pipeline, as listed here:

adm http://www.sc.rwth-aachen.de/ns/adimat

adc http://www.sc.rwth-aachen.de/ns/adimat/comments

ada http://www.sc.rwth-aachen.de/ns/adimat/attributes

For the same reason we will in the remainder of this work refer to these three XML namespaces
by the name prefixes shown. For example, the AST XML document consists of a core tree in the
adm namespace, possibly with subtrees from the ada or adc namespaces, or any other namespace,
attached to it.

6.5.2 XML AST examples

In this section we provide some short examples for the AST XML. We give examples for one short
input function shown in Listing 15 to be transformed in reverse mode and show the AST XML in
graphical form in Figure 23. This graphical form is a very simple and direct representation of the
XML sub tree beginning with the function element. XML elements are rendered as grey boxes
labelled with the element name and text nodes in dark green boxes labeled with the node text.
The binary, unary, and op elements are coloured in light green and light blue and are labelled
with the @op or @sign attribute value, respectively. We see for example the parentheses as a light
blue box labelled with (). Since these nodes only ever have a single child and carry no semantic
meaning after the parsing stage, they are in effect redundant and they are removed in one of the
first preprocessing steps of our adjoint code generator.
function z = fsqb (x , y)

i f abs (y^2 − x) < 1e−7
z = y ;

else

68

http://www.sc.rwth-aachen.de/ns/adimat
http://www.sc.rwth-aachen.de/ns/adimat/comments
http://www.sc.rwth-aachen.de/ns/adimat/attributes

6. Treeprocessing with XML and XSLT for AD and other structural transformations

z = fsqb (x , (y + x / y) / 2) ;
end

end
Listing 15: An example function to demonstrate the use of AST XML

Figure 23: The AST XML document of the example function in Listing 15

function [a_x nr_z] = a_fsqb (x , y , a_z)
tmpca1 = 0 ;
tmpca2 = 0 ;
tmpca3 = 0 ;
z = 0 ;
tmpba1 = 0 ;
i f abs (y^2 − x) < 1e−7

tmpba1 = 1 ;
adimat_push1 (z) ;
z = y ;

else
adimat_push1 (tmpca3) ;
tmpca3 = x / y ;
adimat_push1 (tmpca2) ;
tmpca2 = y + tmpca3 ;

69

6. Treeprocessing with XML and XSLT for AD and other structural transformations

adimat_push1 (tmpca1) ;
tmpca1 = tmpca2 / 2 ;
adimat_push1 (z) ;
z = rec_fsqb (x , tmpca1) ;

end
adimat_push1 (tmpba1) ;
nr_z = z ;
[a_tmpca1 a_tmpca2 a_tmpca3 a_x a_y a_z] = a_zeros (tmpca1 , tmpca2 ,

tmpca3 , x , y , z) ;
tmpba1 = adimat_pop1 ;
i f tmpba1 == 1

z = adimat_pop1 ;
a_y = adimat_adjsum (a_y , a_z) ;
a_z = a_zeros1 (z) ;

else
[tmpadjc1 tmpadjc2] = ret_fsqb (a_z) ;
z = adimat_pop1 ;
a_x = adimat_adjsum (a_x , tmpadjc1) ;
a_tmpca1 = adimat_adjsum (a_tmpca1 , tmpadjc2) ;
a_z = a_zeros1 (z) ;
[tmpadjc1] = adimat_a_mrdividel (tmpca2 , 2 , a_tmpca1) ;
tmpca1 = adimat_pop1 ;
a_tmpca2 = adimat_adjsum (a_tmpca2 , tmpadjc1) ;
a_tmpca1 = a_zeros1 (tmpca1) ;
tmpca2 = adimat_pop1 ;
a_y = adimat_adjsum (a_y , adimat_adjred (y , a_tmpca2)) ;
a_tmpca3 = adimat_adjsum (a_tmpca3 , adimat_adjred (tmpca3 , a_tmpca2)) ;
a_tmpca2 = a_zeros1 (tmpca2) ;
[tmpadjc1 tmpadjc2] = adimat_a_mrdivide (x , y , a_tmpca3) ;
tmpca3 = adimat_pop1 ;
a_x = adimat_adjsum (a_x , tmpadjc1) ;
a_y = adimat_adjsum (a_y , tmpadjc2) ;
a_tmpca3 = a_zeros1 (tmpca3) ;

end
end

Listing 16: The adjoint code generated for the function from Listing 15

Then we show an even smaller example function in Listing 17. Here we also show the XML
markup of the function subtree in Listing 18. For this second example, we show the graphical
AST representation at several stages of the processing, differentiating the function w.r.t. the first
parameter x:

• At the beginning of the pipeline, shown in Figure 24

• Immediately after the adjoint code generation, shown in Figure 25

• At the end of the pipeline, immediately before the adjoint MATLAB code is generated,
shown in Figure 26

The resulting adjoint code is shown in Listing 19.

function z = fmtimes (x , y)
z = x ∗ y ;

end
Listing 17: A small example function to demonstrate the use of AST XML in the adjoint code
generator

70

6. Treeprocessing with XML and XSLT for AD and other structural transformations

<func t i on xmlns=" h t tp : //www. sc . rwth−aachen . de/ns/adimat ">
<outvars>
<var>
<id id=" 0 ">z</ id>

</var>
</ outvars>
<id id=" 3 ">f t imes2</ id>
<param− l i s t>
<var>
<id id=" 1 ">x</ id>

</var>
<var>
<id id=" 2 ">y</ id>

</var>
</param− l i s t>
<statement− l i s t>
<binary op="=">
<var>
<id id=" 0 ">z</ id>

</var>
<binary op=" ∗ ">
<var>
<id id=" 1 ">x</ id>

</var>
<var>
<id id=" 2 ">y</ id>

</var>
</binary>

</binary>
</statement− l i s t>

</ func t i on>
Listing 18: The AST XML document of the example function in Listing 17 at the beginning of
the XSLT processing pipeline

In Figure 25 the AST XML document is shown immediately after the adjoint code generation.
The function now has two outputs, the adjoint result a_x and the function result, which has been
renamed from z to nr_z. The statement-list element now has five children:

1. The forward sweep consists of the original statement. No push is required in this case.

2. The function result is available at this point and assigned to the renamed output variable
nr_z to save it.

3. The adjoint of x is initialized using the initialize-adjoint abstract element

4. The adjoint of z is initialized using the initialize-adjoint abstract element

5. The adjoint of x is updated with the adjoint of the right hand side of the original assignment
w.r.t. x, using the abstract elements adjoint-increment and adjoint-left-multiplication

In Figure 26 the AST XML document is shown immediately before the final MATLAB code is
generated. Here the abstract elements have been devolved to regular components of AST XML.
The two initialize-adjoint elements have been merged into one by a postprocessing step, and so
are both handled by a single call to a_zeros. The adjoint-increment has been devolved to an
assignment with a call to adimat_adjsum on the RHS and the adjoint-left-multiplication has been
devolved to a call to the adimat_adjmultl runtime function. The resulting adjoint code is shown
in Listing 19.

71

6. Treeprocessing with XML and XSLT for AD and other structural transformations

Figure 24: The AST XML document of the example function in Listing 17 at the beginning of the
XSLT processing pipeline

Figure 25: The AST XML document of the example function in Listing 17 immediately after the
actual adjoint code generation step

72

6. Treeprocessing with XML and XSLT for AD and other structural transformations

Figure 26: The AST XML document of the example function in Listing 17 end of the XSLT
processing pipeline

function [a_x nr_z] = a_ftimes2 (x , y , a_z)
z = x ∗ y ;
nr_z = z ;
[a_x a_z] = a_zeros (x , z) ;
a_x = adimat_adjsum (a_x , adimat_adjmultl (x , a_z , y)) ;

end
Listing 19: The adjoint code generated for the function from Listing 17

6.5.3 Abstract XML AST elements and namespaces

With abstract elements we refer to further elements from the adm namespace which carry semantic
meaning but are not considered part of the AST XML language. They are often specific to the
task of adjoint code generation. They are generated in the adjoint code generator pipeline, mostly
by the actual adjoint code generator step. They are devolved to standard AST XML elements by
some later step. This allows to simplify the adjoint code generator in many ways.

The abstract elements used in the pipeline are the following:

tmp this wraps the id of var to denote a temporary variable, with attributes @kind, @name, etc.
Devolves to unique variable names

a this wraps the id of var to denote an adjoint variable. Devolves to a name prefix, usually a_

push-values plain values to push. Devolves to adimat_push

push-index indexed values to push. Devolves to adimat_push_index

push-field struct fields to push. Devolves to adimat_push_field

pop-values plain values to pop. Devolves to adimat_pop

pop-index indexed values to pop. Devolves to adimat_pop_index

pop-field struct fields to pop. Devolves to adimat_pop_field

initialize-adjoint zero an adjoint variable. Devolves to a_zeros

adjoint-increment with two elements target and incr. Devolves to an assignment with adimat_adjsum
or just + on the RHS

adjoint-reduction with two elements adj and value, check for implicit expansions to reduce.
Devolves to adimat_adjred

73

6. Treeprocessing with XML and XSLT for AD and other structural transformations

adjoint-reshape with two elements adj and value, check for implicit reshapes to undo. Devolves
to adimat_adjreshape

The abstract elements are in our view an important technique to simplify the adjoint code
generator. By defining crucial repetitive pieces of the adjoint code in such abstract terms, many
tasks can be factored out of the adjoint code generator. For example we can both optimize abstract
elements in later steps and also decide how to devolve the abstract elements, either dynamically
or through user options. Basically speaking, we are simply inventing new elements in the adm
namespace, and this allows us to structure our adjoint code first only in broader sketches, and
leave the filling in of details for later. This overall approach is discussed in more detail in Section
6.6.

As to optimizing, for example, consecutive elements of push-values are merged, thus opti-
mizing the code by reducing the number of statements. The same is done with the pop-values
and initialize-adjoint elements, as can be seen in Figure 26 in Section 6.5.2. To this end, the
runtime function adimat_push uses the varargin special parameter to allow an arbitrary num-
ber of pushed values. Then, push-values is devolved dynamically to either adimat_push or
to adimat_push1, when it happens to have just one value to push. The runtime function
adimat_push1 does not use the varargin special parameter and executes a little bit faster.

The devolution of abstract elements can also be controlled by user options. For example,
the option well-behaved causes the adjoint-reduction and adjoint-reshape elements to devolve to
just the adjoint, that is, the call to adimat_adjred which is basically there for safety reasons
[WBB12], is ommited for performance reasons, cf. Section 3.4. As another example, the expansion
of adjoint-increment can be controlled by a user option to be either a call to adimat_adjsum,
which recurses through cell arrays and structs, or to a plain addition with +. As we shall see later
when we consider XSLT code metrics of our pipeline in Section 6.7, the handling of user options
is as often a significant chunk of the total amount of code, so again a major part of the code can
be factored out in this way.

Another advantage of using abstract elements is that they are often a more concise represen-
tation than the devolved AST XML. For example, the content of incr of adjoint-increment is
duplicated in the devolution as it occurs both on the LHS and RHS of the resulting statement, as
can be seen in Figure 26 in Section 6.5.2.

6.6 XSLT processing steps for AST XML
A big advantage of XSLT is that the general operation to traverse the AST and thereby faithfully
copying all elements, which is also called the recursive identity transformation [Wik20c], can easily
be made the default behaviour of the XSLT processing. At the same time templates are applied
at each node, which means that the user can add special rules for any particular node to effect
the intended change to the document. This is achieved by using a very simple XSLT stylesheet
called copy.xsl, shown in Listing 20.
<xsl :stylesheet xmlns :x s l=" h t tp : //www.w3 . org /1999/XSL/Transform "

version=" 1 .0 ">

<xsl:output method="xml " />

<xsl:template match=" / ">
<xsl:apply−templates s e l e c t=" node () " />

</xsl:template>

<xsl:template match="@∗ | node () ">
<xsl:copy>

<xsl:apply−templates s e l e c t="@∗ | node () " />
</xsl:copy>

</xsl:template>

74

6. Treeprocessing with XML and XSLT for AD and other structural transformations

</xsl :stylesheet>
Listing 20: This XSLT stylesheet provides rules to copy every node while traversing the XML
document

Then any intermediate processing step consists of an XSLT stylesheet that has a structure
similar to the XSLT stylesheet remove-nested-statement-lists.xsl shown in Listing 21. This
stylesheet includes the copy.xsl stylesheet. This means that we only have to add templates for
the operations that we actually want the processing step to perform. For elements not matched
by these, the processing will fall back to the rules in copy.xsl. The intended operations are two
in this case: Firstly, the element processing is copied and a new element step is appended to its
children describing the current step. Presumably, the processing element already has a number
of step elements, which are in effect copied by the xsl:apply-templates, which reverts to the
default rules in copy.xsl. After this output has been emitted the template emits the step element
that is placed next. Placing this template in corresponding form in every pipeline stylesheet
thus produces a list of processing steps in the processing element, which is useful for tracing and
debugging purposes.

The actual AST transformation is very simple in this case: When a statement-list element is
immediate child of another statement-list element, this is redundant and can be safely removed.
Hence the template only recurses into the children with xsl:apply-templates, but does not copy
the element itself. The statements contained in the nested statement-list element are thus
inserted into the parent statement-list element at that point.

<xsl :stylesheet xmlns :x s l=" h t tp : //www.w3 . org /1999/XSL/Transform "
xmlns:adm=" ht tp : //www. sc . rwth−aachen . de/ns/adimat "
xmlns=" h t tp : //www. sc . rwth−aachen . de/ns/adimat "
version=" 1 .0 ">

<xsl: include hr e f=" copy . x s l " />

<xsl:template match=" / ">
<xsl:apply−templates/>

</xsl:template>

<xsl:template match=" adm:process ing ">
<xsl:copy>

<xsl:copy−of s e l e c t="@∗ " />
<xsl:apply−templates/>
<step>remove nested statement l i s t s</ step>

</xsl:copy>
</xsl:template>

<xsl:template match=" adm:statement− l i s t / adm:statement− l i s t ">
<xsl:apply−templates/>

</xsl:template>

</xsl :stylesheet>
Listing 21: This XSLT stylesheet is a generic example for some intermediate processing step in our
XSLT pipeline. Its operation is to remove nested statement-list elements, but not its children.

This example showcases some of the principles used in our XSLT pipeline design. By defining
the processing step remove-nested-statement-lists.xsl we can remove the artifact of a nested
statement-list at any time in the pipeline. Conversely this means that in all the other processing
steps we can proceed agnostically and defensively and wrap any list of statements that we possibly
generate in a statement-list element, regardless of whether this is actually required or redundant.

The example Listing 21 also shows the use of XML namespaces in our XSLT pipeline: When
referring to XML elements which are in a namespace in the XPath expressions inside an XSLT

75

6. Treeprocessing with XML and XSLT for AD and other structural transformations

stylesheet we always have to use a namespace prefix, even if the XML elements does not have a
prefix in the document. Thus, even though the element is called just processing in the XML docu-
ment, it actually is in our main AST XML namespace http://www.sc.rwth-aachen.de/ns/adimat,
because the default namespace is set in the document using the xmlns attribute. So in the XSLT
stylesheet we bind the prefix adm to that namespace and use adm:processing to refer to the ele-
ment in the match expression of first template. In the XSLT we also bind the default namespace
to the same main AST XML namespace so that we can output elements from AST XML without a
namespace prefix, as in the case of the added step element. This approach allows us to work with-
out a namespace prefix for our main AST XML namespace in all of the XML and in the elements
that we create via XSLT. Note that both the processing and the step elements could rather be
placed in the AST attributes namespace http://www.sc.rwth-aachen.de/ns/adimat/attributes
due to their purpose, but since the processing element is structurally set apart so well towards
the top of the document, this was not deemed necessary.

This simple design for individual filter steps results in a very generic approach which works
entirely irrespective of the XML document structure. At each step only the elements that are to
be manipulated or whos contents are to be used need to be known by their name, namespace,
structure and purpose. For example, both the ada and the adc namespaces are not used in Listing
21, but should the XML document contain elements from these namespaces, or indeed any further
namespaces, they would still be copied and thus be avaílable to steps further down the pipeline.

Thus, these XSLT language properties together with the simple scheme for defining transforma-
tion steps, naturally induces a programming paradigm where complex tasks are split into multiple
steps. In particular a compiler construction approach is induced which results in a relatively large
number of passes, i.e. traversals of the AST, because each XSLT filter step is a full AST pass in
its own right.

The starting point for most XSLT filter steps is the recursive identity transformation, which
is a particularly useful form of the identity transformation, which is of crucial importance in
itself in the field of data transformation. In XSLT the recursive identity transformation takes
a particularly simple form. The recursive identity transformation has the important property
that desired transformations can be effected at any level [Wik20c], by simply adding a template
matching the desired node. While many and even complex structural transformations can be
expressend in XSLT templates relatively concisely, we have to consider that the situation that
probably occurs most often in software development is that we have an existing piece of software
and want to achieve some improvement in the data flow, which may require several change at
different places. The most obvious danger is always to break anything else, so the transformations
we wish to add will often be nearly identity transformations except the for specific changes that
we have judged to be required.

For this reason it is of great value that the identity transformation in XSLT is extremely concise
even in the recursive form. Further desirable properties of individual XSLT filter steps are the
following:

• idempotency

• order interchangeable with or orthogonal to other filter steps

• well defined operation

• shortness

• valuable conditions established by the filter step

• half-identity transformations

These properties increase the chance that a filter step can be reused in a similar XML/XSLT
processing task, such as AD for some other source language. They also increase the maintainability
of the software by offering flexibility regarding the arrangement of the filter steps.

76

6. Treeprocessing with XML and XSLT for AD and other structural transformations

For example, being idempotent makes such a processing step a candidate for being repeated
whenever the information it provides or the post condition it enforces might have become invalid.
The remove-nested-statement-lists.xsl is idempotent for example. When there is no nested
statement-list it performs the identity transformation on the AST. Being orthogonal to a number
of other steps enables the rearrangement of a certain step, moving it past the others in the chain,
should it turn out that some order w.r.t. yet another step is required. Such properties are relatively
easy to ascertain from the source code of XSLT. For example, we don’t have to insert a step of
remove-nested-statement-lists.xsl after every other step in our pipeline. Not only since do
many steps not produce statement-list elements, but also because many steps will perform their
intended function regardless of the presence of nested statement-list elements. Thus, steps that
do produce nested statement-list elements are still orthogonal to many other steps following
it, even though the AST XML with nested statement-list elements is technically invalid. Also the
remove-nested-statement-lists.xsl is othogonal to many other steps so it does not matter
if we remove these artifacts now or later in the pipeline. Thus, in our adjoint code generator
pipeline, we use remove-nested-statement-lists.xsl just in two places, immediately before
those two steps that are actually confused by these artifacts: the actual adjoint code generation
in reverse-ad.xsl and the output source code generation in to-source.xsl.

More generally, we think is is appearent that it is often quite natural, and that it requires
almost no particular effort, to adhere to a so-called defensive programming style in XSLT. The
filter steps can often work on a strict need-to-know basis, they only need to know the names
of those elements that they are actually concerned with, but on the other hand can easily be
constructed in such a way that regarding any other language elements or annotations the tree is
copied as faithful as possible.

In the Listing 21 we also see an example of the literal output principle (cf. Section 6.2.1).
To emit a new XML element step we simply write that XML element inside the XSLT template
handling the processing element.
<xsl :stylesheet xmlns :x s l=" h t tp : //www.w3 . org /1999/XSL/Transform "

xmlns:adm=" ht tp : //www. sc . rwth−aachen . de/ns/adimat "
xmlns=" h t tp : //www. sc . rwth−aachen . de/ns/adimat "
version=" 1 .0 ">

<xsl: include hr e f=" copy . x s l " />

<xsl:output method="xml " />

<xsl:template match=" / ">
<xsl:apply−templates/>

</xsl:template>

<xsl:template match=" adm:process ing ">
<xsl:copy>

<xsl:copy−of s e l e c t="@∗ " />
<xsl:apply−templates/>
<step>r e b i n : make binary e lements t ru l y binary</ step>

</xsl:copy>
</xsl:template>

<xsl:template match=" adm:∗ " mode=" reb in ">
<xsl:choose>

<xsl:when t e s t=" count (p r e c ed ing− s i b l i ng : : adm: ∗) ␣=␣0 ">
<xsl:apply−templates s e l e c t=" . " />

</xsl:when>
<xsl:otherwise>

<binary op=" { . . /@op} ">
<xsl:apply−templates s e l e c t=" p r e c ed ing− s i b l i ng : : adm: ∗ [1] "

mode=" reb in " />

77

6. Treeprocessing with XML and XSLT for AD and other structural transformations

<xsl:apply−templates s e l e c t=" . " />
</binary>

</xsl:otherwise>
</xsl:choose>

</xsl:template>

<xsl:template match=" adm:binary ">
<xsl:copy>

<xsl:copy−of s e l e c t="@∗ " />
<xsl:apply−templates s e l e c t=" adm: ∗ [l a s t () −1] " mode=" reb in " />
<xsl:apply−templates s e l e c t=" adm: ∗ [l a s t ()] " />

</xsl:copy>
</xsl:template>

</xsl :stylesheet>
Listing 22: This XSLT stylesheet normalizes left-associative binary elements. When a binary has
more then two children, additional binary elements are inserted

Another example for an important idempotent operation used to normalize the tree is rebin.xsl,
shown in Listing 22. This filter normalizes binary elements so they have exactly two children. This
filter works correctly for left associative binary operators. Again we see the literal output principle
at the point where additional binary elements are created. The attribute @op is set to a computed
value using the so called attribute value templates of XSLT. We also see the mode feature of XSLT
in action in this example. Basically the idea is that the default mode is reserved for the copy-and-
traverse semantics while any differing behaviour is implemented in additional modes, in this case
the single mode rebin is used to traverse the child list from the back to the front. When we reach
the first adm element, we revert to the default mode, and hence copy the element. Otherwise, a
binary element is created. The first child of the new element is created by recursively applying
mode rebin to the preceding element. This will produce either a futher binary element or a copy
of the preceding element. The current element is copied by reverting to the default mode and
hence becomes the second child of the new binary element.

As we saw in the introduction to AST XML (cf. Section 6.5) the post condition or rebin.xsl
is not true for the AST as it comes out of the parser, already. When it comes to differentiation,
however, we are better off when we can rely on the fact that there are exactly two children in
binary. So we apply the filter before entering the adjoint code generation process. Then again
the condition is not necessarily true for the result tree after differentiation, as inactive factors in a
multiplication may produce no result term, for example, thus producing an addition with a single
term. Again, we could simply re-apply the normalization with rebin.xsl to remedy the situation.
<xsl :stylesheet xmlns :x s l=" h t tp : //www.w3 . org /1999/XSL/Transform "

xmlns:adm=" ht tp : //www. sc . rwth−aachen . de/ns/adimat "
version=" 1 .0 ">

<xsl:output method=" text " encoding=" utf−8 " />

<!−− f u r t h e r d e f i n i t i o n s omit ted −−>

<xsl:template mode=" to−source " match=" adm:binary ">
<xsl:for−each s e l e c t=" adm:∗ ">

<x s l : i f t e s t=" po s i t i o n () ␣> ; ␣1 ">
<xsl :text> </xsl :text>
<xsl:value−of s e l e c t="@op" />
<xsl :text> </xsl :text>

</ x s l : i f>
<xsl:apply−templates mode=" to−source−operand " s e l e c t=" . " />

</xsl:for−each>
</xsl:template>

78

6. Treeprocessing with XML and XSLT for AD and other structural transformations

</xsl :stylesheet>
Listing 23: This is an excerpt from the XSLT stylesheet that prints MATLAB code from AST
XML, showing the template handling the binary elements

Now let us also briefly discuss the final stylesheet in the pipeline, which outputs the MATLAB
code corresponding to the AST XML. We continue the discussion of the binary elements and show
in Listing 23 just the template handling these. At first sight a more obvious implementation would
be to rely on the fact that binary is supposed to have exactly two children:

<xsl:template mode=" to−source " match=" adm:binary ">
<xsl:apply−templates mode=" to−source−operand " s e l e c t=" adm: ∗ [1] " />
<xsl :text> </xsl :text>
<xsl:value−of s e l e c t="@op" />
<xsl :text> </xsl :text>
<xsl:apply−templates mode=" to−source−operand " s e l e c t=" adm: ∗ [2] " />

</xsl:template>

However, it costs us nothing to formulate this template such that it also works correctly with
more than two adm child elements. Arguably, it even works correctly in the presence of a just single
adm child element, at least in the cases of + and * the resulting behaviour is sensible. This is a sim-
ple example of the kind of defensive programming that one frequently employ in XSLT pipelines.
Also note that either form shown is robust against elements from any further namespaces, due to
the prefixed wildcards that we use to select the children. The mode to-source-operand is not
shown in the excerpt. It has the task of printing the operand either with or without a parenthesis,
according to need. To this end it relies on the attribute @precedence. This attribute is required
as a prerequisite and it is refreshed by a dedicated postprocessing step, which sideloads a table
of operator precedences and updates the @precedence attribute of all unary and binary elements
according to the @op attribute.

A further important class of transformations is what we would call half-identity transforma-
tions. These always exist in pairs, and when applied one after the other, produce the identity
transformation, so the second is the inverse of the first. In practical terms, we often want to trans-
form the AST, which is in a form A, in some way to arrange it into a more advantageous form B. So
we go ahead and define that change as a transformation a-to-b.xsl, but we also define the related
transformation b-to-a.xsl that undoes the change. This allows us to temporarily put the tree
in the desired form whenever we wish. Of course, the transformation by a-to-b.xsl is probably
set up in the first place because if can simplify a subsequent transformation transform-b.xsl.
In this situation the hope is of course that we can still apply b-to-a.xsl without harm after
applying transform-b.xsl. Without harm meaning that the result is valid in the form A and
that the semantical change we achieved with transform-b.xsl is also still present in the result. A
typical half-identity transformation as we envision it is rather short and concise, and consequently
it should usually not be difficult to verify that, by considering the transformations in question.

As an exmple for a pair of half-identity transformations in the adjoint code generator con-
sider the unifications mentioned in Section 6.7. In the preprocessing we devolve [a,b], which is
represented by unary with @op set to [] in AST XML, to a function call to horzcat. This trans-
formation is not entirely trivial since such an expression may also result in a nested call of horzcat
and vertcat, and we must pay a little bit of attention to avoid code bloat, for example devolve
[a;b] to vertcat(a,b) and not more blindly to vertcat(horzcat(a),horzcat(b)). This costs
us a couple of modes in the transformation template, but again it is a clear and well defined task
that is factored out of the adjoint code generator. In the reverse-ad.xsl transformation we now
only have to handle function calls to vertcat and horzcat. In the resulting adjoint code, the so
preprocessed code comes out in two versions: in the forward sweep we will find the unified calls,
while in the reverse sweep we find the corresponding adjoint statements.

When we now apply the inverse of the unification we will transform the unified calls back to
bracketed expressions in the forward sweep, while not changing the adjoint code. Since vertcat

79

6. Treeprocessing with XML and XSLT for AD and other structural transformations

and horzcat may also occur in the original code we use some attribute to distinguish the unified
ones.

In this particular case, the inverse transformation is not strictly required, we could just leave
the unified form and emit that. However, the inverse transformation can revert the code back to
the original form in the forward sweep code which makes it more readable and recognizable to the
user.

Finally we would like to present a small example for a mode that works across several different
elements. Lets consider the task of generating the Leibniz differential of an arithmetic expression
of + and *. In XSLT we write this very naturally with a single mode diff as shown in Listing 24.

<xsl :stylesheet xmlns :x s l=" h t tp : //www.w3 . org /1999/XSL/Transform "
xmlns:adm=" ht tp : //www. sc . rwth−aachen . de/ns/adimat "
xmlns=" h t tp : //www. sc . rwth−aachen . de/ns/adimat "
version=" 1 .0 ">

<xsl: include hr e f=" copy . x s l " />

<xsl:output method="xml " />

<xsl:template match=" adm:∗ " mode=" d i f f ">
<xsl:message terminate=" yes ">Cannot d i f f e r e n t i a t e element <xsl:value−of

s e l e c t="name () " /></xsl:message>
</xsl:template>

<xsl:template match=" adm:binary " mode=" d i f f ">
<xsl:message terminate=" yes ">Cannot d i f f e r e n t i a t e element binary with

@op=<xsl:value−of s e l e c t="@op" /></xsl:message>
</xsl:template>

<xsl:template match=" adm:var " mode=" d i f f ">
<xsl:copy>

<xsl:copy−of s e l e c t="@∗ " />
<id>d_<xsl:value−of s e l e c t=" . " /></ id>

</xsl:copy>
</xsl:template>

<xsl:template match=" adm:binary [@op= ’+ ’] ">
<xsl:copy>

<xsl:copy−of s e l e c t="@∗ " />
<xsl:apply−templates mode=" d i f f " />

</xsl:copy>
</xsl:template>

<xsl:template match=" adm:binary [@op= ’∗ ’] ">
<binary op="+">

<xsl:copy>
<xsl:copy−of s e l e c t="@∗ " />
<xsl:apply−templates mode=" d i f f " s e l e c t=" adm: ∗ [1] " />
<xsl:apply−templates s e l e c t=" adm: ∗ [2] " />

</xsl:copy>
<xsl:copy>

<xsl:copy−of s e l e c t="@∗ " />
<xsl:apply−templates s e l e c t=" adm: ∗ [1] " />
<xsl:apply−templates mode=" d i f f " s e l e c t=" adm: ∗ [2] " />

</xsl:copy>
</binary>

</xsl:template>

80

6. Treeprocessing with XML and XSLT for AD and other structural transformations

<xsl:template match=" adm:statement− l i s t ">
<xsl:copy>

<xsl:copy−of s e l e c t="@∗ " />
<xsl:apply−templates mode=" d i f f " />

</xsl:copy>
</xsl:template>

</xsl :stylesheet>
Listing 24: A simple XSLT stylesheet implementing the differentiation rules for the + and *
operators

In this stylesheet we again use the default mode as the one that copies everything. The mode
diff is implemented with templates matching certain binary elements and var elements. For
others an error message is produced.

Now we need a trigger, some point we initially use xsl:apply-templates with mode diff and
thus enter the mode. We can choose the statement-list element, and differentiate every item. So
our stylesheet will accept AST XML where all statement level elements are expressions composed
of + and *.

Then the template of mode diff matching var elements copies the var element and creates
a new identifier in an id element prefixed with d_. The template of mode diff matching binary
elements with @op set to + also copies the element, so creates a + node and recurses into the
children with mode diff, implementing the rule d(a+ b)→ da+ db.

The template of mode diff matching binary elements with @op set to * creates creates a
new binary with @op set to + node and then creates two copies of the multiplication node inside.
Inside the first we recurse with mode diff into the first operand while we copy the second, and
in the second vice versa. This is in effect writing the Leibniz rule (3) in XSLT. This example
pertains to the forward mode of AD of course, and yet it is still simplified. In an AD application
we would check at the point of the recursion whether the relative operand is active, for example.
However, we think this simple example demonstrates that differentiation is something which is
straightforward to implement in XSLT.

The actual adjoint code generation for a nested expression has been described already [Wil10].
Here we compose the adjoint expression inside out while recursing downwards through the tree.
That is, we begin with the adjoint of the variable on the LHS of the statement. This output
subtree is passed through the template calls via a xsl:param. In each template we create a new
adjoint expression node which has among its operands the adjoint expression, and pass the result
on via a parameter. As explained in Section 6.2, this is on the border of what is possible in XSLT
1.0: The output tree of the adjoint expression constructed so far is passed as a parameter and on
each level of the expression a new output tree is created where the existing one is inject in with
xsl:copy-of at some point.

6.7 The suspension bridge design model for the adjoint code generator
The general software design model we use for the adjoint code generation can be compared to a
suspension bridge. There are two rather complex transformation steps and these are also ones
that structurally change the code. One is the outlining preprocessing step and the second is the
actual adjoint code generator. In each case we can often note the opportunity to simplify these
complex software componenents by factoring out certain tasks. These sub tasks are then handled
by one or more preprocessing or postprocessing steps, or both, which usually tend to be relatively
simple, and as such can be arrange with relative liberty. For example certain annotations need to
be refreshed after the outlining preprocessing step.

When the core AST is modified in the sense that its nodes are rearranged such that the pretty
printer would yield a different code, we call a transformation structural. When this is not the case
a transformation could be called informational, annotational, or incremental.

Structural transformations that are done in preprocessing steps in the adjoint code generator
are:

81

6. Treeprocessing with XML and XSLT for AD and other structural transformations

Basic rearrangement Anything we do not like about the XML structure as it comes out of the
C++ parser, which is to be kept as simple as possible, is rearranged. After these preliminary
steps we call the format AST XML, for which the grammar is given in the appendix.

Index and multiple assignment elimination Indexed assignments and multiple assignments
are both special cases. Eliminating cases of assignments that are both indexed and multiple
simplifies the adjoint code generator

Reflexive assignment elimination Reflexive assignments are also a well known special case in
adjoint code. These can also be eliminated

Outlining The well-known outlining transformation that restricts the height of the expressions
and thus inhibits combinatorial explosion in the differentiation stage

Unification Certain operations which have several equivalent names or language idioms are
mapped to a unified form, preferably to function call. Two examples: x+y is mapped to
plus(x,y) and [x,y] to horzcat(x,y). Generally MATLAB code can be mapped to a
function-call-only form, except possibly assignments

Incremental transformations in the preprocessing are:

Activity Set an attribute active on any relevant element depending on the activity of the vari-
ables

Principality Set an attribute principal on any element which represents a storage location,
such as x(k), s.abc(k), c{1}.gef(k), etc.

Im postprocessing stage we can highlight the following steps:

Abstraction optimizations The abstractions (cf. Section 6.5) for frequent idioms like push or
pop statements, adjoint increments, etc. are rearranged to effect optimizations

Abstraction devolution Towards the end, abstractions are finally expanded into regular AST
nodes

Restore unifications Unifications are undone to present the program code in the original form,
where it occurs in the adjoint code

Cleanup Certain artefacts from the adjoint code such as empty branches, adjoint increments
with 0, etc. are removed. While we do not wantonly produce such artefacts it can reduce
complexity to let them occur and clean them up afterwards

Refresh precedence The precedence attributes on all unary and binary operators is updated,
to ensure correct parenthesisation by the pretty printer. This is more precisely a preprocess-
ing step for the pretty printer

While we do not want do list and discuss all the processing steps in the adjoint code generator
in detail, we established some code metrics of the XSLT stylesheets of the processing pipeline.
Some meaningful code metrics for XSLT are the following:

Number of Templates Total count of xsl:template elements in the stylesheet

Number of Elements Total count of XML elements in the stylesheet, counting both XSLT
elements and literal output elements

Number of Modes Number of distinct modes used in the stylesheet

82

6. Treeprocessing with XML and XSLT for AD and other structural transformations

Figure 27: Code metrics for the XSLT stylesheets used by the adjoint code generator over that
compiler pass number

83

6. Treeprocessing with XML and XSLT for AD and other structural transformations

While the first and the second metric provide a plain measure for the amount of code in the
stylesheet, the number of modes gives the number of different sets of rules and thus the number
of different internal states that are needed to perform the desired task, which gives an indication
of the semantical complexity of the transformation.

When we establish these metrics on the XSL stylesheets in the adjoint code generator pipeline
and plot the result over the step number, the result is as shown in Figure 27.

In the result plot we see that the metrics proposed are quite strongly correlated, in particular
the first of the two. Three peaks clearly stand out from among the steps:

reverse-ad.xsl at step 78 the actual adjoint code is generated

renice.xsl a few steps later, the abstract elements are devolved to plain AST XML

to-source.xsl at the very end of the pipeline the MATLAB code is emitted

The peaks of the latter two steps are noticably less pronounced when in the plot of the third
metric. This coincides with our qualitative observation that renice.xsl is lengthy but conceptu-
ally quite simple, since each of the abstract elements is devolved in an entirely local transformation.
The high score in the metrics is probably due to the fact that here most of the options are im-
plemented: Should a call to adimat_adjsum be generated or adjoints just added with plus, for
example. This is done and decided in the template handling adjoint-increment, in that stylesheet
etc.

The to-source.xsl step similarly is relatively lengthy yet conceptually not that involved.
What is a challenge here is mostly to produce source code that is not only valid but also properly
formatted and indented, which requires quite a number of additional template modes. One intri-
cate task is to properly determine the number of indentation units on each level, but this is of
course not critical. More important is to properly place parentheses depending on the precedence
of operators, since mistakes here can result in invalid code, which is also not entirely trivial. There
are also several options being handled here.

This lets us conclude that the third of the proposed metrics, counting the number of different
modes in XSLT, is the most indicative of the actual code complexitiy in semantical terms. As
another indication, this metric lets step number 56, which is canonicalize.xsl, stand out from
the rest, since it has five distinct modes. This is a stylesheet that is of a relatively common size
with twelve templates and 81 elements, and hence does not stand out from the crowd in metric
1 and 2. However, it performs the outlining of nested expressions, and hence a major structural
transformation of the AST. Two sub tasks are factored out into preceding steps, namely we first
detect and and decide which element represent subtrees to be outlined, and mark them with
an attribute. This in itself is spread out on two different filter steps. The other subtask is to
number the marked subtrees in each statement, which is done in a single filter step. Now the filter
canonicalize.xsl can decompose the nested expressions into assignments to temporary variable,
reusing the same names tmp1, tmp2, etc. in each statement.

To show how simple most of the processing steps are, we provide a histogram of the third code
metric in Figure 28. Here we see that the vast majority of XSL steps uses no modes at all, that
is, just the default template set, and twelve of them use a single mode, that is, two template rule
sets. Next we have four steps using two modes, three steps using three modes and one step using
four modes. On the upper end, we have one stylesheet using five modes (canonicalize.xsl),
one using ten modes (renice.xsl), one with 25 modes (to-source.xsl) and one with 104 modes
(reverse-ad.xsl).

6.8 Facilitating XML and XSLT processing for problem solving
When we use XML and XSLT processing we first of all need some overall control of the structure,
some program that implements the sequence of transformations of the input XML, for example
by working through a list of file names of XSLT stylesheets. Fortunately there are several options
in multiple languages that are all relatively easy to use. This is discussed in Section 6.8.1.

84

6. Treeprocessing with XML and XSLT for AD and other structural transformations

Figure 28: Histogram of XSL code metric 3 for the XSLT stylesheets used by the adjoint code
generator with bins 0,1,2,3,4,5,. . . ,10,. . . ,25,. . . ,104

85

6. Treeprocessing with XML and XSLT for AD and other structural transformations

While manipulating XML with XSLT is in our view a highly efficient approach to solve struc-
tural processing tasks, we are also very clear in our view that XML is not necessarily a good
starting point when a structural problem description should be provided by a human operator.

Many programming languages or other text based formats like CSV, YAML, or JSON provide
a considerably more concise and editable representation of such structured problem instances. In
such situations we may need methods to translate the problem description to XML first. For a
programming language, for example, this would mean that a parser is to be constructed for that
language with the sole task of emitting the resulting AST in XML format.

In the following subsections we present two software packages that we have developed specif-
ically to address this problem. The first is P2X, which is a generic recursive descent parser that
is configurable to output well-structured XML for almost any structured text format, including
many common programming languages. This is described in more detail in Section 6.8.2.

When we are inside a certain programming language, XML datasets can generally be created
very easily using just text output to print the XML markup. For example, it is easy to write a
shell script that prints out certain file or directory information as XML, and not other tools are
required.

The other way is much more difficult. Consider for example accessing information from some
XML document from within a plain Unix shell script. The easiest way in that situation is often
the generation of shell code with XSLT, to be evaluated by the shell for the desired effect, or the
generation of some other text representation which we can handle in shell scripts, such as CSV.

So, the second software example that we present is is called R2X, a R package that can convert
between named lists in R and XML documents and vice versa, and so provides a bridge between R
and XML. The exploits the structural equivalence between named lists in R and XML documents,
which we discussed in the introduction to this chapter. The XML markup is printed from a named
list by a simple recursive function. Conversely, a simple XSLT stylesheet generates R code from a
given XML document, to be evaluated by the R interpreter to produce the equivalent named list.
This tool is described in more detail in Section 6.8.3.

6.8.1 Setting up XSLT pipelines

Setting up XML processing pipelines is appearently so easy that no particular software solution has
really established itself so far, neither in the actual XML format nor in the implementation, except
possibly that the pipeline definition should of course be in XML [Wik20g]. Most notable instances
are the X3C recommendation XProc [WMT10] while one of the oldest use of XML pipelines in
software was in the Apache Cocoon project [The13].

In our case we require only XSLT filters als elementary pipeline steps, so we also refer to the
concept as a XSLT pipeline. Inspite of its simplicity XSLT pipelines are a very powerful tool,
in our view. One reason could be the that, strictly speaking, it constitutes a form of generative
programming, cf Section 6.9. From a formal definition, in the most simple case a list file names
or URLs of XSLT stylesheets, we generate the actual program to be run, be it a Unix shell script,
and execute it.

To generate a Unix shell code that processes the listed steps one by one, from whatever XML
that lists the steps is a very simple and effective solution. This script could call the xsltproc
program that is the command line interface to the libxslt [Vei03] XSLT 1.1 processor for each
step. Other XSLT processors like Xerces and Saxon also have command line facilities. Another
very interesting option is the xmlstarlet [Gru02] program which also provides XPath, validation,
pretty-printing, and other useful XML utilities on the command line.

We have ourselfs also once generated so called Makefiles to be processed by the make program,
to generate a directory structure defined in an XML document. Generating a Makefile which lists
the individual processing steps and their dependencies immediately allows the efficient reuse of
processed results in the output, and a partial reprocessing depending on which parts of the input
have changed.

When we want to do without intermediate files on disk, we have to work within a single process.
An immediate and very interesting option here appears to be the tool xmlsh [Lee08]. A script

86

6. Treeprocessing with XML and XSLT for AD and other structural transformations

very similar to the Unix shell script proposed above could here do the same processing without
intermediate files.

Python has two different interfaces to the libxslt XSLT 1.1 processor libraries, one shipped
with libxslt directly [Vei03] and one in the form of the lxml package [Fou20], and the R language
has the xslt package [Oom17] which also interfaces libxslt. MATLAB has the xslt function,
which interfaces to the Saxon 6.5.5 processor [Kay01b] since at least version R2006a [Mat06].
Both languages have the eval function, so we can generate the relevant script from a pipeline
description, with XSLT, and execute it to perform the pipeline processing.

XSLT 1.0 is also supported by all major webbrowsers, and available via a JavaScript API. To
provide XSLT pipelines in web browsers we have created the XML Hierarchical Linear Pipelines
(XHLP) project [Wil20d]. XHLP provides a uniform interface to XSLT processing accross the
major web browsers together with a set of utility functions on top the XMLHttpRequest (XHR)
to facilitate downloading of stylesheets and XML documents, with or without caching, and form
submission by POST requests. XHLP pipelines are defined by a lists of steps in JavaScript, which
can be created either directly in JavaScript or imported from a simple XML doctype. Each step
is either the URL of an XSLT stylesheet, a parsed stylesheet document, the name of a JavaScript
function, or the URL of another XHLP pipeline in XML format, hence the name hierarchical. Input
documents are either parsed XML documents or XML markup strings which are then parsed to
documents on the fly. This facilitates working with document subtrees that are obtained easily
via the innerHTML or outerHTML properties of DOM element nodes, which are in fact available
on element nodes of any kind of XML document and crucially also provide well-formed XML
[W3C20], while setting these properties is the most simple gateway to inserting new subtrees into
the DOM tree [MDN20].

ADiMat uses for the adjoint code generator a custom C++ application processing a simple
linear XML pipeline definition together with a parameter facility and some rudimentary branching,
which uses the libxslt library for individual steps. This allows the caching and reused of compiled
stylesheets, which is interesting because of the repeated XSLT processing steps in the pipeline but
even more so for the ADiMat transformation server, which can thus avoid hard disk access.

Whatever option is chosen, the programming effort is little to minimal, even for in-process
pipelines without intermediate files. An obvious and indespensible enhancement for the latter is
the option of writing all intermediate XML documents to the disk for debugging.

For advanced applications it may be required to create iterative processes such as fixpoint
iterations based on some basic elementary step. The elementary step, which may in itself be an
XSLT pipeline, would perform some operation that after a finite number of steps attains a certain
condition on the output. Another XSLT filter or pipeline would be tasked with determining the
stop condition, i.e. return a string of either 0 or 1 indicating if the iteration shall be aborted or
continued. Using such a feature could be used to implement the AD activity analyis on the AST
XML, for example. However, in the case of ADiMat the activity analysis is already implemented
in the C++ part and its results are made available in the XML parser output.

6.8.2 P2X

The frequently arising task of parsing structure text formats is solved generically by our P2X parser
software [Wil13b], which outputs an XML document for any textual input. P2X is basically a
generic recursive descent parser written in C++11. The parse tree is structured according to
parenthesisation and unary and binary operators with precedence which are defined by simple
configuration files. Thus, the intermediate step of generating and compiling a parser as is required
when using parser generators like Bison/YACC [DS00] or ANTLR [PQ95] is avoided.

In our experience, many common language elements as commonly expressed in classical EBNF
grammars can also modelled by the comparatively simple rules of P2X. For example, to parse the C
language, one might define the common arithmetic operators and also ; and , as binary operators
with relatively lower precedence and the parenthesisations (), [], and {}. The parenthesised items
are then themselves defined as postfix unary operators. With these rules the common C language
elements like function definitions or function calls result in specific structures in the parse tree

87

6. Treeprocessing with XML and XSLT for AD and other structural transformations

that can then be handled accordingly. In particular we recommend to first use XSLT to translate
the P2X output to a more concise XML representation of the C language and then define further
transformations for effecting the actual goal, which possibly includes pretty printing the result
back to C language code, on that custom XML dialect.

As such P2X has the potential to make the XML and XSLT processing approach applicable to
a wide array of tasks involving structural transformations with inputs originating from structured
text formats, including many programming languages. Given that input from non-XML structured
sources is an important part of XSLT 2.0, cf. Section 6.2, and the software support for this
standard is rather limited, P2X appears ideally suited to act as a drop-in replacement to emulate
that feature.

The XML output has the additional property that it contains the original input entirely, as
tokenized by the lexer. This is even true for input tokens that are handled as irrelevant to the
structure, such as source code comments. More precisely, the output is a tree with the leaf-text
property and the concatenation of all the leaf elements that carry text nodes in document order
reproduces the input identically. This property is quite useful when only a local transformation
is required, as large parts of the input may remain unstructured then. However, the number of
possible applications is propably rather limited. It is also difficult to maintain this property across
non-trivial transformation steps. That is, as soon as we translate the P2X output into some more
abstract form we will propably also have to provide an explicit unparsing transformation for that
structure, if eventual conversion into some text based format is desired.

An second implementation of P2X in JavaScript is also available as part of the package, thus
enabling the use of structured text other than XML directly in the web browser, as input to XML
pipelines.

A critical question for P2X is of course the underlying tokenizer or lexer. Ideally this should
be freely configurable as well, since tokenization differs subtly from one language to the other. For
example, in XML, XPath and XSLT the text x-y is a single identifier token while in C it would
be three separate tokens. The R language has many syntactic elements not commonly found in
others such as the operators <-, <--, @, $, and double bracket [[]] for element extraction. The
C++ version of P2X currently provides several different compiled-in lexers build with Flex [Das07;
Lev09] and the more efficient RE2C [Tro20] to choose from. In the JavaScript version of P2X we
use a custom lexer that can be configured more flexibly using regular expressions.

6.8.3 R2X

As another example of software to facilitate a smooth and seemless transition to the world of XML
documents is R2X [Wil20a], which provides a direct mapping between named lists in R and XML
documents, which is possible due to a structural equivalence between the two, cf. Section 6.

The R programming language, which is at the same time procedural and functional, has a
quite complex and heterogenous type system, but arguably the central and core data type is the
list. List items can be assigned names by setting the names attribute of a list. Contrary to the
associative maps or dictionaries that are found in most other interpreted languages, such as Python
or JavaScript, item names or keys can be used repeatedly and they do not affect the order of the
list elements. This establishes the structural equivalence of named lists in R and XML documents,
or more precisely, between named lists and XML element trees, and since leaf list items in R can
carry a text string, the equivalence extends to leaf-text XML documents, cf. Section 6.1.1. The
attribute system in R completes the picture, as it appears as the natural choice for representing
the XML attributes. There are also almost no restrictions on the names themselves, given the
special quoting available in R. The names do not have to adhere to the conventional rules of
programming language identifiers. In particular, XML names which often contain dash characters
- or with namespace prefixes and thus containing colon characters : can be used unchanged.
XML Namespaces are not directly supported in R, but we can of course associate the names in
namespaces with their prefixed name while in R. XML comments and processing instructions also
cannot be mapped by R2X.

There are at least two other packages in R for working with XML, firstly xml2 [WHO15],

88

6. Treeprocessing with XML and XSLT for AD and other structural transformations

which is an interface to the libxml2 library [Vei04], and xslt [Oom17], which is an interface to
the libxslt library [Vei03]. The xml2 packages provides function for reading, parsing and writing
XML documents and the DOM interface to navigate XML documents, and the xslt package
basically provides just a single function, called xml_xslt.

The structural equivalence of R named lists and XML documents is exploited in the R2X pack-
age directly by providing a bijective map made up by two function r2x and x2r. The r2x function
converts a named list in R to an XML document by generating the corresponding XML markup
text directly. The function x2r is for the main part implemented in a single XSLT stylesheet, which
generates the R code of the named list corresponding to the input XML document. This function
will ignore text nodes of non-leaf elements, thus being restricted to leaf-text XML documents as
input.

By this bijective map the R2X package provides not only a quick and simple method to serialize
R lists to XML, to access information in existing XML documents using native R data types and
operators, but it also enables the transformation of named list structures with XSLT. Also, it is
in effect an alternative to the DOM API, although somewhat incomplete. Interestingly, in Python
there is the ElementTree package which uses a similar approach, providing a means to read and
write XML documents directly to and from a custom data structure other than the DOM API
[Lun07]. The R2X package is however much simpler in that it can use a data structure native
to R directly as the target and in that it does not provide any tree searching or manipulation
functionality, leaving that also to the means built into~R.

In summaray, R2X provides a shortcut to using structural transformations with XSLT from R,
accessing information in XML documents, or exporting structured information in XML format.
We could take things even a step further, and not only represent the data in R but also the XSLT
stylesheets, although it seems unlikely that this would result in more understandable code.

As a short example of a non-trivial XML document, we show how the ubiquitous copy.xsl
stylesheet from Listing 20 could be represented in R via R2X, using the overload of the deparse
function for that R2X adds for XML documents:
l ibrary (xml2)
l ibrary (x s l t)
l ibrary (r2x)
wr i t eL ine s (deparse (read_xml (’ copy . x s l ’)))

This results in the following ouput, which is valid R code representing the structure. The
code uses the helper function element to more concisely represent values with attributes, as a
replacement to the function structure that R normally uses to deparse such values. This helper
function allows to list the attributes first within each element, so the code resembles more that of
the XML markup text.
‘ x s l : s t y l e s h e e t ‘ <−

element (‘ ver s ion ‘ = ’ 1 .0 ’ ,
l i s t (

‘ x s l : output ‘ = element (‘method ‘ = ’ xml ’) ,
‘ x s l : template ‘ = element (

‘match ‘ = ’/ ’ ,
l i s t (

‘ x s l : apply−templates ‘ = element (‘ s e l e c t ‘ =
’ node () ’))) ,

‘ x s l : template ‘ = element (
‘match ‘ = ’@∗ | node () ’ ,
l i s t (

‘ x s l : copy ‘ = l i s t (
‘ x s l : apply−templates ‘ = element (‘ s e l e c t ‘ =

’@∗ | node () ’)
)))))

With r2x we can transform the named list stylesheet back to a proper XSLT document and
run a complete id transformation cycle with another named list in R as the input document.

89

6. Treeprocessing with XML and XSLT for AD and other structural transformations

l ibrary (x s l t)
l 1 <− l i s t (a=1, b=l i s t (a=2) , a=3)
indoc <− read_xml (r2x (l 1))
namespaces <− l i s t (x s l = ’ http : //www.w3 . org/1999/XSL/Transform ’)
xs ldoc <− read_xml (r2x (‘ x s l : s t y l e s h e e t ‘ ,

name = ’ x s l : s t y l e s h e e t ’ ,
namespaces = namespaces))

l 2 <− x2r (xml_x s l t (doc = indoc , s t y l e s h e e t = xs ldoc))
l 2

The last value l2 is identical to l1 so the output printed is:

$a
[1] 1

$b
ba
[1] 2

$a
[1] 3

Thus, the R2X package paves the way to define XSLT transformations and possibly even entire
XSLT pipelines entirely in R source code. However, in our view this is probably not very practical
after all, and the R2X package is more useful in that it provides the ability to seamlessly export
and import structured information to and from XML documents.

For example, when a structural problem description is required for a certain task, this struc-
tural problem description can be specified directly in the R language in the form of a named
list, and transformed to XML whenever necessary, using R2X. This in-language specification of
structured problem descriptions is often seen as a desirable feature. It has the potential to, in
many settings, eliminate the need to come up with declarative domain specific language, plus the
required accessories such as a syntax, a grammar, a lexer, a parser, unparser, documentation,
examples, etc. The ability to freely transform between different representations ultimately very
much facilitates a completely syntax-agnostic approach to format specification. This means that
we only specify the structure of some informational entity or problem description, for example as
a EBNF grammar and leave the actual representation, and methods of creation, representation,
serialization, storage, etc. up to the user.

6.9 Generative programming with XSLT
Generative programming is a relatively old yet interesting topic of computer programming. It has
long been a staple of programming since generating the appropriate code of a computer programm
that performs some task is a simple idea yet often also surprisingly simple solution [ACK03; CP03;
SA09] to a wide range of problems. More broadly speaking, all kinds of compilers are instances of
generative programming.

In our view XML processing with XSLT lends itself particularly well to generative program-
ming. We want to distinguish different types of generative programming in the context of XML
pipelines:

1. Generating XSLT with XSLT

2. Generating an XML pipeline definition with XSLT

3. Transforming XML with XSLT

4. The generation of document types, schemas or grammars with XSLT

90

6. Treeprocessing with XML and XSLT for AD and other structural transformations

With 1. we might refer to what could also be called true second order programming, generating
a program from another program written in the same language, such as generating a C program
code with a C program. In XSLT this situation for doing that is very comfortable, of course, since
XSLT stylesheets are XML documents. The only obvious difficulty is how to separate between
XSLT elements that are meant to be processed and those that are meant to be output. This is
provided for in XSLT by the xsl:namespace-alias element, which rebinds some namespace in
the output tree to another one immediately after the processing is complete. So, second order
XSLT is of course a very interesting option. This technique can be used to implement XPath
evaluation of dynamic strings, for example, in a two step process. One could also envision to
compose XSLT stylesheets dynamically. A very useful, interesting and early XSL software that
makes use of this technique is Graphotron [Nic01], which generates graphs from XML documents
according to user specified rules. The basic structure of Graphotron is shown in Figure 29. This
software is used to produce the graphs of the AST XML examples in Figures 23 to 26 in Section
6.5.2. A related topic is the transformation of XSLT into other langauges [Béz+03]. However, in
our practical work it is not the most commonly used technique, and we do not use it in the adjoint
code generator.

Figure 29: The basic structure of the Graphotron tool. In addition Graphotron can produce
output not only in Dot but in three other formats as well

With 3. we refer to the basic process of transformating a single XML document with several
XSLT stylesheets applied one after the other in a linear pipeline. This may be seen as generative
programming already, in our view, since at each step we can may express information in some XML
language dialect and then transform that in the consecutive steps, possibly in some other language
dialect, possibly inventing new elements and attributes along the way, to be later processed further,
thus establishing their semantic meaning. This what we have discussed at length by presenting
our AST XML in Section 6.5, the transformations that make up the adjoint code generator in
Section 6.6, and concepts that we use to arrange theses steps in Section 6.7.

With 2. we then refer to more complex networks of XML transformations, to be imagined in
a more evolved form as a graph for example, where the nodes are stages in the transformation,
defined by certain document types, and the edges are pipelines of XSLT stylesheets. An XML
definition of such a structure might also be generated with XSLT or a pipeline of XSLT stylesheets.
This might also be done dynamically. This is discussed with respect to the pipeline definitions of
our adjoint code generator in Section 6.9.1.

With 4. we refer to the fact that the modern grammars for XML are themselves represented
in XML and can thus also be generated with XSLT [CH03]. Also interesting and related is the
code generation from document type definitions with XSLT, such as to automatically generate
APIs in different languages for a given document type. UML is also a suitable basis for such a

91

6. Treeprocessing with XML and XSLT for AD and other structural transformations

task [Obj17].

6.9.1 Generating XML pipeline definitions

The simple concept of a linear pipeline, in 3. is immediately extendable to tree or graph-like
process network, conditional and repeated execution, in 2. The XSLT like solution would be to
implement such features by some preprocessing to the pipeline definition, that is, some additional
XSLT processing on the pipeline definition itself. In ADiMat for example we use XML documents
to define tree-like processing structures, that take one input to multiple possible outputs. From
these we extract the linear path from the root to any one of the outputs, in a kind of static branch
unrolling. This method allows us to define multiple closely related pipelines in a single document.
For example, the adjoint code being generated and emitted in AST XML or in MATLAB source
code are two pipelines which differ only in the last step.

From this practical example we observe again that we gain a truly huge amount of expressional
power by reverting to second order programming. And that is easily possible, all within our own
devices, with XML. We define some ad-hoc XML language P for a linear list of processing steps,
another, possibly similar, ad-hoc XML language T that defines a processing tree and a XSLT that
performs the path extraction, thereby converting from our langauge T to P. In this particular case
the advantage is that we do not have to add branching or other forms of conditional computation to
the language P directly, and hence an existing processor for the language P can be used unchanged.

To provide further practical example on the considerations involved with XML processing, let
us continue to discuss P and T. In the particular case of T and P both the transformation and
the specification of T to P turn out to be not that trivial after all. The reason lies in the fact
that, generally speaking, we have to transform a child-parent relation to a sibling relation when
transforming from T to P. This itself already is not trivial, but something easily done with XSLT.
The real problem comes with a practical consideration: Starting off with existing pipelines in the
P format of length 50 or more, we cannot let a newly defined language T have documents with a
nesting depth of 50, or else the documents would be completely unwieldy. So what we actually
need is a kind of fused tree where the branches are only at those places where an actual branching
occurs between the related pipelines, with plain lists of filter steps attached. Then the list of
processing steps for a particular output node is the concatenation of the filter step lists found on
the path from the root to the output node. Thereby we obtain trees in the T language that are
not too deeply nested, at the expense of a somewhat more complex language T and a somewhat
more complex transformation between T and P.

In the case of the adjoint code generator all of this is internal to the code generator. That
is, in a kind of rapid prototyping approach we start off with some form of T and some kind of
transformation. Then, as soon as we manage to extract the desired P pipelines from this process
we are done and can stop the development.

6.10 Case study: The XC electronic document system
The XC electronic document system has been designed by the author [Wil20c] and is currently
being made available via the author’s newly founded company AI & IT (cf. http://ai-and-it.
de). This system stores the relevant information in XML documents, which provides a kind of
document as code technique similar to the configuration as code [Wik20a] and infrastructure as
code [Wik20d] techniques that have been devised in recent years in the context of the so-called
DevOps family of software development and deployment strategies [Wik20b]. The main advantage
of such an approach, where the end result is uniquely determined by a set of line based text files,
is in our view that the usual versioning control systems such as Git can be used to track and
manage change sets.

The XC system has a web interface that is also kept as simple as possible, practically only
providing the user management via the well-known web development framework Django. Django
is however used in a rather limited way, basically only providing the Python code of actions on
the server, the so called views. The object relational mapper (ORM) layer of Django is used for

92

http://ai-and-it.de
http://ai-and-it.de

6. Treeprocessing with XML and XSLT for AD and other structural transformations

the builtin user and session management only and otherwise replaced by working directly with
XML documents. These are stored in a common file hierarchy that can be managed via a set of
server actions via the web interface, including searching for file names and contents. Hence the
organization and layout of the system of documents can be flexibly arranged and may be decided
entirely by the user.

The Django views on the server are designed to simply compile the required information in
XML format and send it to the web browser without further processing. Any kind of processing and
visualization is done in the browser using XSLT processing choreographed by a custom JavaScript
framework. Thus, template rendering layer of Django is only very minimally employed in XC,
by providing just two templates, one for a HTML page that bootstraps the system for any given
entry link, such as /login/index or /main/view?path=/adrs/meyer.xml, and another template
that generically sends an XML document with the response to any of the underlying AJAX end
points, such as /login/ajax_index or /main/ajax_view?path=/adrs/meyer.xml. In the second
example the XML response in particular contains the XML document from the relative location
adrs/meyer.xml in the tree as a subtree. Transformed documents may be send back to the server
for storage.

This system provides for a highly efficient multi-user document server that requires only mini-
mal hardware resources by shifting most processing work to the web browser, thus harnessing the
compute power available at the end device of the users, be it a PC, a tablet or a smart phone. Of
course the relevant XSLT stylesheets must also be transferred to the user.

Any change to the document markup on disk is automatically committed to a Git repository
thus providing all the associated features such as integrity, revisability, traceability, backup, in-
cluding remote transmission of backups, error recovery, be it from system or user errors, and the
ability to build decentralized networks of coordinated XC systems. This includes the actual work-
flows of the deployed system as well, which are implemented as XSLT filters and XML pipeline
definitions, that also reside as XML documents in the system and are thus editable and also for
all other puprposes treated just as any other document in the XC system.

The visualization of documents in the web browser is done in HTML and SVG, in particular
providing a kind of web-font feature using the opentype.js JavaScript library [DB17]. This allows
to use any OpenType or TrueType font file that is available on the server to render text in SVG
vector shapes or paths on the end device.

In the currently envisaged application labelled as XCrm the documents to be handled are
typical business documents suchs as bills, invoices, and offers together with a simple database of
addresses. This provides a simple CRM system that produces business documents which can be
freely and precisely designed in SVG. Invoices can be extracted from other software, which is trivial
in the case of GNUCash [Gnu], which uses XML to store its books. In the case of a database-based
systems such as Fakturama [Fak], the process is slightly more complex. One could either directly
access the underlying database and piece together the required information manually or one might
provide the software with an XML export filter, similar to the approach we used with the existing
ADiMat C++ core, see Section 2.7.

The SVG layout for documents can be freely created by the user, only having to obey very
simple rules to specify the places where the document texts shall appear, thus providing a template
for appearance of the various document types. XC then extracts the design parameters such
as location, dimension and font, font size, etc. from the template and typesets the document
texts accordingly at the correct locations. The typesetting algorithm based on opentype.js is
implemented in JavaScript not XSLT. The resulting SVG is injected into the SVG template, thus
producing the result document.

In a last step the SVG form of the documents may be converted to PDFs layed out exactly in
the desired paper format. While this last step must currently be performed on the server, or by
the user on his PC, using the Apache Batik SVG renderer, or rasterizer [The20], the resulting
procuments are not only visually appealing but also legally safe since the text rendered in vector
graphics cannot be manipulated easily.

The JavaScript framework in XC is designed to generically handle any kind of documents,
and to automatically show the available transformation filters and pipelines pertinent to a given

93

6. Treeprocessing with XML and XSLT for AD and other structural transformations

document. This means that the XC document systems can be easily adapted to almost any kind
of workflow, by simply adding template XML documents for new document types and XSLT
stylesheets and pipelines to transform them to the system, which is possibly via the web interface,
just as for any other document. Transformation pipelines can be specified in very simple XML
documents listing the steps. A pipeline step may also be another pipeline, allowing for hierarchical
organization and reuse of pipeline parts. These transformations are implemented using the XML
Hierarchical Linear Pipeline (XHLP) JavaScript library by the author, cf. Section 6.8.1. The
association of document types to filters and pipelines in XC is simply by name prefixes. Further
specially prefixed pipelines are used for rendering documents to HTML and SVG, and thus provide
the visualisation in the browser. As a result the visualizations can also easily be saved as documents
on the server, or locally, just as any other transformation result, or send to customers by email.

The XSLT processing is available in all web browsers via a JavaScript API. Minor differences
in the API across browsers are abstracted away by the XHLP layer. For extraction of subtrees
given by an XPath expression, which is a frequent subtask in XC, we use the two-stage generative
programming technique discussed in Secion 6.9.

Also, the XPath function document() works as expected which means that additional XML
documents can be requested from the server directly from XSLT. The common situation is that
a template for a given result type is loaded via document() and initially traversed with copy-all
rules, only intercepting certain elements where information from the actual input document is
to be inserted. Such three-way processing steps that are ideal for producing output according to
user-specified templates are much more common in this scenario than in the adjoint code generator
for ADiMat, which is basically a very long linear pipeline with some information side-loaded via
document() in a few instances.

In XC we use the URL specification features of Django to define a generic directory-like down-
load end point such as /main/getf/<url:path>. This is defined to perform a pattern search for the
path name */<url:path> with the find Unix utitlity and diretly return the first file found in the
tree. So we may refer to a XSLT stylesheet with an URL like http://example.com/main/getf/xsl/stylesheet.xsl
we obtain the first matching file named stylesheet.xsl that resides in a directory xsl anywhere
in the tree. When in that stylesheet we use the xsl:include element with href set to the rel-
ative URL include.xsl the stylesheet will automatically be downloaded from the same pseudo
directory. Likewise we may use XPath expressions like

document(’/main/getf/company/info.xml’)

to load some further information into XSLT stylesheets which is still a relative URL and hence
will also be downloaded from the correct host http://example.com.

6.10.1 Production use of XC system at fionec GmbH

The XC techique is also used sucessfully at the german company fionec GmbH (https://www.
fionec.de) were the author is also currently employed as a software and hardware architect. Here
the XC system is used in two applications: the first is a glass fiber re-spooling station, which is
essential to the fiber distribution service provided by fionec GmbH for glass fiber products of
the US company Corning. The hardware has been implemented using two stepper motors with
integrated controllers from Nanotec GmbH. These are controlled by a Python application that
receives the user parameters such as the desired fiber length and spooling speed, and the fiber
type and the spool type, which are required for their geometric dimensions to spool the fiber in
the correct length. The XC system is used to implement a simple web interface to this hardware,
and the document features are used here to obtain a simple record of the spooling transactions.
The maximum amount of fiber that is generally to be respooled is 12.5 km, half the length of a
full 25 km standard spool of glass fiber. Respooling this length with 500 RPM on another empty
standard spool takes about 40 min, which is why a visual feedback of the progress is deemed
essential, while the user management and authentication feature provided by XC is also much
welcomed.

94

https://www.fionec.de
https://www.fionec.de

6. Treeprocessing with XML and XSLT for AD and other structural transformations

The other XC-based application at fionec GmbH is the so called environment module. This
is an energy efficient micro computer equipped with a sensor module for environment conditions.
The XC system again provides a simple web interface for starting and stopping the recording,
setting parameters, configure automatic recording schedules. The XC documents in this case are
the configurations and of course the actual recorded sensor output. This is stored per measurement
in CVS text format, and also send directly and unmodified to the web browser were it is converted
to XML and then visualized with XSLT.

6.11 XML document types, schemas and validation
In the beginning of XML development document type definitions (DTDs) were used to define
XML grammars or schemas. A DTD is a text based format that is adapted from the older SGML
language. There are also two XML based formats for XML schemas, XML Schema Definition
(XSD) [Tho+04; BMC+04] and RelaxNG [CM01], where the latter also has an equivalent text
notation similar to classical EBNF, called RelaxNG Compact Notation [Cla02b]. While XML
validation is not at all a trivial subject [Mur+05], mature tools and techniques do exist, such
as the validator jing which can validate XML documents against RelaxNG grammars [Cla01;
Cla02a].

There are certain shortcomings to the XML schemas, which in our view limits their usefulness.
First of all, it is hard work to create a suitable grammar in the first place. Secondly, the value
gained from checking for validity is in itself somewhat dubious, in our view, mostly because it is
a binary piece of information. Simply speaking, we either have to create a very loose and generic
grammar or we will have very many invalid documents.

And thirdly, from a purely software technical point of view, validity is of interest when using
XML across multiple applications, but not so much within a single XML processing pipeline. The
reason is of course that within a pipeline it is only the consecutive steps that are the clients of
XML that is produced in some step. So we could simply define validity by what consecutive
filter steps can handle correctly. Given that the entire pipeline is written by the same developer,
one is basically free to do as one pleases, and in particular due to the ease with which one
can spontaneously create whatever new element at some stage and the in our view remarkable
robustness of the average XSLT filter step against such entirely new elements that appear out of
the blue, it is probably even a distinguishing feature of XSLT pipelines that the deviation from
validity is the norm for any intermediate stage.

A recurrent and as of yet not satisfactorily solved problem which also affects our AST XML is
that of multi-namespace documents. A real world example is a HTML document with interspersed
MathML or SVG subtrees. This document type is entirely sensible, has obvious applications and
is supported by many browsers [MDN20b; MDN20a]. It is easily defined in words, but accurate
grammars for such hybrid document types are difficult to come by. To formally specify the
document type a DTD driver was created for XHTML+SVG+MathML [W3C02], but this has
limitations such as fixed namespace prefixes that have to be chosen in advance. In HTML5 both
math and svg elements are now incorporated directly. Obviously, neither approach scales well, or
would easily allow the addition of yet further document types.

In RelaxNG we have the Modular Namespaces (MNS) recommendation [Cla03]. A related
work is the Namespace-based Validation Dispatching Language (NVDL) [SF16; NK07]. In the
Modular Namespaces we find an interesting feature that is called pruning. This means that before
validation against a certain document type any elements from a foreign namespace are removed
before the actual validation. This would mean in our terms that only the core tree is validated.

This idea of preprocessing steps before validation can be expanded, in our view, to a more
generic concept of validation. To the basic pruning operation we can also add our normalization
filter steps. So we could define validity for AST XML documents semantically by the following
steps:

• Remove elements and attributes not from the adm namespace

• Apply the remove-nested-stmt-lists.xsl filter

95

7. Complex arithmetic

• Apply the rebin.xsl filter

• Apply the renice.xsl filter

• Remove text nodes that are not children of leaf elements

• Validate against the RelaxNG schema of AST XML

This is just a concept and not currently used in practice. As a concept however it is important
since the fact that we have available the individual filters means that we have our AST under
control even though it may feature the denormalizations or the abstract elements that the filters
remove. We can flexibliy insert one or more of these filters in the pipeline whenever some following
filter step requires the corresponding post condition.

In order to give an example of the heterodox relation that a certain filter step in our adjoint
code generator pipeline can have to the issue of validaty of the input document, let us consider
the pretty printer to-source.xsl. As we showed in one of our XSLT examples, in Listing 23 in
Section 6.6, we implemented the rule for emitting binary operators defensively, so they may even
be de-normalized. So in this respect to-source.xsl can handle invalid AST XML. One the other
hand, the @precedence attribute must be set correctly on each binary element, a fact that is not
covered by validation. This could be explained by the pretty printer consisting of a combined
transformation that is made up of two stylesheets, were the first one refreshes the @precedence
attributes. Then we discussed that we remove all elements from other namespaces before validating
the core tree alone. While we indeed remove all compiler annotations, the elements from the ada
namespace, in one of the last filter steps, the added elements from the adc namespace are kept
since they constitute compiler messages. And of course the proper presentation of the errors and
warnings from the adjoint code generator is probably to be considered an important part of the
pretty printer.

7 Complex arithmetic
In this chapter we want to focus on the complex numbers and complex arithmetic and how they
are handled in the AD processes of ADiMat: Let us consider a function f(c) : C → C and its
derivatives. The complex number c ∈ C is made up of two real components, c = (x, y) where
x ∈ R and y ∈ R, called the real part x = <c and the imaginary part y = =c. When i is the
imaginary unit s.t. i2 = −1, so we also have c = x+ iy. The function f can also be thought of as
two real parts which we call u and v in the following: f(c) := (u(x, y), v(x, y)).

When considering a derivative df of f , we will naturally want it to be in the complex domain:
df ∈ C . On the other hand we may also consider the underlying real components u, v, x, and
y, which results in a 2 × 2 Jacobian matrix. More formally, we may consider a vector function
f̂(r) : R2 → R2 that wraps f :

df̂(r) = (<f(r1 + ir2),=f(r1 + ir2)) = (u(r1, r2), v(r1, r2)). (7)

Then the 2 × 2 Jacobian of f̂ would be the canonical form of the derivative of f in terms of real
arithmetic:

df(c)
dc

∼=
df̂
dr =

(
du
dx

du
dy

dv
dx

dv
dy

)
(8)

The relation between the real and the complex domain regarding differentiation is given by the
famous Cauchy-Riemann equations. They establish two conditions on the complex derivatives, and
these conditions are expressed in terms of the derivatives of the real components of the complex

96

7. Complex arithmetic

values f and c:

d<f
d<c = d=f

d=c ≡ du
dx = dv

dy (9)

d=f
d<c = −d<f

d=c ≡ dv
dx = −du

dy . (10)

These equations hold iff the function f is complex analytic, that is, it has a derivative df/dc ∈
C. This situation is depicted in Figure 30.

Figure 30: The Cauchy-Riemann equations: The derivative of a complex-valued function f(c) ∈ C
in a complex parameter c ∈ C has four different derivative paths. When the derivative df/dc shall
exist as a complex number, the two pairwise relations shown must be true.

The Cauchy-Riemann equations arise from the following consideration: we want to carry the
Leibniz rule

df(c)→ ∂f
∂c · dc (11)

over to the complex domain, given the complex multiplication operation · and the complex values
defined as df := (d<f, d=f) = (du,dv) and dc := (d<c,d=c) = (dx,dy) and the partial derivative
∂f
∂c := (∂u

∂x ,
∂v
∂x) . At the same time, the Leibniz rule must also hold for the component-wise

operations on the underlying real numbers, i.e. considering f̂ instead of f again:

d<f = ∂u

∂x
dx+ ∂u

∂y
dy,

and likewise
d=f = ∂v

∂x
dx+ ∂v

∂y
dy.

When we now equate these equations with those that result from multiplying out (11), the Cauchy-
Riemann equations follow.

Another way to understand the Cauchy-Riemann equations is by considering that whenever a
2 × 2 matrix is of the form

(
a −b
b a

)
it corresponds a the complex number. Thus, when the

2 × 2 Jacobian (8) of the real components of f is of that form, which means that the Cauchy-
Riemann conditions apply, then the derivative of f exists in the form of a complex number and
f is analytic. The Cauchy-Riemann equations also have physical interpretations, in particular
regarding 2D incompressible flows, and they imply that a complex analytic function is a conformal
mapping [Wik19a].

97

7. Complex arithmetic

An obvious application of such derivatives is complex-valued optimization, which is the mini-
mization of a real valued objective function of complex parameters: f(c) : C→ R, where c = (x, y)
is a complex number with real and imaginary components x and y. Complex-valued optimization
problems [SBL12; SBL13] are of interest in several disciplines, such as recently in solving complex
valued inverse problems [Flo+14], or in complex valued neural networks (CVNN) [ZM16].

A conceptual problem is appearent in this case, in that the derivative of a real-valued function
f is by definition also real. It must have a zero imaginary part, since =f = 0. Accordingly, the
Cauchy-Riemann conditions are not fulfilled and cease to apply, so a derivative is not defined in
complex arithmethic.

On the other hand, the value of f(c) : C → R clearly may depend on both the real and the
imaginary component of the variable c, or in other words, d<f

d=c may well be non-zero. So, when
we look at the individual real components in the complex numbers we can and must consider the
derivatives of f w.r.t. x = <c and w.r.t. y = =c separately.

So, when a function f is analytic, we compute the limit limh→0(f(c+ h)− f(c))/h =: df/dc,
and we thus obtain a complex limit value df/dc = d<f

d<c +i d=f
d<c and this is all that is required. Note

that at this point it becomes clear that the limit value must be identical for any complex path
that the step h may take to zero. For example, if we wanted to consider a complex directional
derivative limh→0(f(c + v · h) − f(c))/h =: df/dc|v, for 0 < h ∈ R, the value is the same for all
v ∈ C.

When f ∈ R however, then the limit limh→0(f(c+ h)− f(c))/h really is just that, a real value
that results from taking the limit along some complex path h. Now, when h = x+ i · 0, for x ∈ R,
that is, h ∈ R, then the limit value is just d<f

d<c . Similarly, we can obtain d<f
d=c by taking the limit

along h = 0 + i · y, for y ∈ R. Even further, now we can sensibly consider a directional derivative
limh→0(f(c+ v · h)− f(c))/h =: df/dc|v along a complex-valued direction v ∈ C and we have, for
h ∈ R, that

df/dc|v := lim
h→0

(f(c+ vh)− f(c))/h = <v · df/dx+ =v · df/dy,

is a linear combination of these two derivatives. This means, for some t ∈ R such that c =
(x(t), y(t)),

d
dtf((x(t), y(t))) = df

dc
d
dt (x(t), y(t))

= df
dc ·

(
dx
dt ,

dy
dt

)
=
(

du
dx,

dv
dx

)
·
(

dx
dt ,

dy
dt

)
=
(

du
dx

dx
dt + du

dy
dy
dt ,

dv
dx

dx
dt + dv

dy
dy
dt

)
=
(

du
dx

dx
dt ,

dv
dx

dx
dt

)
+
(

du
dy

dy
dt ,

dv
dy

dy
dt

)
= df

dx
dx
dt + df

dy
dy
dt

and we see we can differentiate through a complex operation w.r.t. a real parameter t as expected.
So summing up, the Cauchy-Riemann equations mean that we do not have to consider the two

possible derivative directions separately in the case of a complex analytic function, because there
is a complex derivative value and this captures all four derivatives, by (9) and (10), but when a
function is not complex analytic we can and must consider the derivative directions separately.
These basics of the differentiation of complex-valued operations are discussed further in Section
7.1

In the application of automatic differentiation to complex arithmetic we should consider first
the forward mode. This has already been discussed in depth in [PBC95], for example. In the
forward mode, everything basically works as expected and as usual. We have to provide for all the

98

7. Complex arithmetic

elementary or builtin functions regarding complex arithmetic, like real, abs, angle, etc. Then, the
result is equivalent to finite differences except for the limited accuracy of the latter. Regarding the
differentiation of the builtin functions, we can summarize the approach very nicely by observing
that we can use arithmetic propagation whenever the function is complex analytic. Then, a partial
derivative exists. When it does not, we must resort to structural propagation, which in this context
just means that we have to manipulate the real and imaginary parts separately. The FM AD of
complex operations is discussed in more depth in Section 7.2.

When we look at the RM, we have to realize that the FM and the RM propagate structurally
entirely different derivatives in complex arithmetic. More precisely, when we canonically seed with
the complex number 1+i0, the imaginary part of the FM derivatives carries the LHS of (10) while
the RM adjoints carry the RHS of (10) in the imaginary part. These two are identical when the
function is complex analytic, and they may be different when it is not.

For example, consider a real real function f(c) : C→ R in a complex variable c = (x, y). Such
a function can never be complex analytic. Now, by the RM mode we obtain both df/dx and
−df/dy when seeding the adjoint with f = 1 while the FM will yield only df/dx when seeding
with dc = 1. To obtain df/dy in FM we have to compute a second directional derivative by
seeding with dc = i.

Figure 31: The forward mode propagates two specific components of the complex derivative.

This is depicted in Figure 31 and Figure 32. Figure 31 shows that when seeding the FM
process, we can choose a complex number dc = (dx,dy). When we canonically set dc = 1, then
the FM delivers the result df/dc = (du/dx, dv/dx). Using other values would return a linear
combination of (8).

Regarding the basic AD business of the reverse mode, any builtin function that is not complex
analytic may require different propagation rules in the RM than in the FM, which is not very
surprising considering the above. These issues regarding the RM are discussed in Section 7.3.

Finally we want to provide two practical examples regarding non-analytic functions with com-
plex arithmetic. We will see that generally, by evaluating a directional derivative along the imagi-
nary direction i we obtain the derivative w.r.t. the imaginary component of the input, in forward
mode, and the adjoint of the imaginary component of the result in reverse mode, respectively. And
this means that both the forward and the reverse mode will return d=f/d=c in the imaginary
component when seeded with i. And, as we saw already, the FM will yield d<f/d=c and the RM
will yield −d=f/d<c in the real component, which means that we can always compute all four
terms of the Cauchy-Riemann equations and (8) with either the FM or the RM. This is discussed
in Section 7.4.

Finally, the generic case of complex optimization, the AD of the norm function of complex

99

7. Complex arithmetic

Figure 32: The reverse or adjoint mode propagates a structurally different component of the
complex derivative in the imaginary part.

values is discussed in 7.5.

7.1 Methods to evaluate derivatives of non-analytic complex arithmetic
Let us consider a real-valued function in complex variables, f(c) : C→ R, and its derivative. The
first method that we should consider is the composition method. It should be fairly clear that,
when we wrap the function f in a bivariate real function g(x, y) = f(x + iy) and use a given
method to differentiate g at the point (x = <c, y = =c) w.r.t both x and y, we should be able to
get the desired derivatives. It obviously works as expected with finite differences:
f = @(z) real ((2 + 1 i) ∗ z)
c = 1 + 2 .1 i
[J , r] = admDiffFD(f , 1 , c)

f =
@(z) real ((2 + 1i) * z)
c = 1 + 2.1i
J = 2
r = -0.1

We first differentiate w.r.t. z as customary, using finite differences. The derivative J is 2, as is
expected, and obviously it is a real number, since the function f is real.
g = @(x , y) f (x + 1 i ∗ y)
[J , r] = admDiffFD(g , eye (2) , real (c) , imag(c))

g =
@(x, y) f (x + 1i * y)
J =

2 -1
r = -0.1

The wrapper function g is defined as proposed above and differentiated. The result is the
gradient tuple J = (dg/dx,dg/dy), where the second entry is the derivative of the real function f
w.r.t. the imaginary component of the input z, that is d<f

d=c .

100

7. Complex arithmetic

This method, to obtain the derivatives of f w.r.t. <z and w.r.t. =z, by considering <z and
=z as two separate parameters is well-known and widely used in complex-valued optimization
[Sav+12].

It is closely related, or even coincides with the so-called Wirtinger calculus [Wir27], which is
also widely used [ZM16; Flo+14]. In Wirtinger calculus the wrapper function g is bivariate in
two complex parameters x and y but otherwise identically defined as g(x, y) = f(x+ iy), and it is
evaluated at the point (x, y) = ((c+ conj(c))/2, i

2 (conj(c)− c)) [Wik19c].

g = @(x , y) f (x + 1 i ∗ y)
cr = 0 .5 . ∗ (c + conj (c))
c i = 1 i . ∗ 0 .5 . ∗ (conj (c) − c)
[J , r] = admDiffFD(g , eye (2) , cr , c i)

g =
@(x, y) f (x + 1i * y)
cr = 1
ci = 2.1
J =

2 -1
r = -0.1

This methods also yields the desired results, and from the example is is clear why: (c +
conj(c))/2 = <c, and i

2 (conj(c) − c) = =c. Since the point where we evaluate the derivative is
identical, we can assume that the Wirtinger derivatives are equivalent the composition method,
or a variant of it.

Another, approach is to consider the derivative of f w.r.t. y as the directional derivative along
the direction i, that is

df
dy = lim

h→0

f(c+ ih)
h

,

for h ∈ R.
The Cauchy-Riemann theorem states that in the complex analytic case the defining derivative

limit df/dz = limh→0
f(z+ih)

h must exist and be identical for any complex path that a h ∈ C takes
towards 0. Now, this is actually not the case here, but that may well be since the function f is not
complex analytic and the Cauchy-Riemann conditions do not apply. However, in real arithmetic
the limit taking the path along the imaginary axis clearly exists, and it is different from the limit
value that results when taking the real axis.

This method can also readily be tested with finite differences:
[J , r] = admDiffFD(f , [1 i] , c)

J =
2 -1

r = -0.1

Note here how we use a seed matrix with two columns S = [1, i] ∈ C(1×2) on the univariate
function. That means, we evaluate two different directional derivatives for the single parameter
z, because it is complex, but the function is not analytic, and we have to consider the real and
imaginary component separately. The charme of this method is that no wrapper function is
required.

This method also shows that when an automatic differentiation process for f is at hand, we
should be able to obtain df

dy by asking it to compute the derivative along the imaginary direction
i. Let us now try the described methods with a more interesting example, which is in C∞:
c = 1 + 2 i
f = @(z) real (cos (sin (2 + 1 i) ∗ z))

101

7. Complex arithmetic

g = @(x , y) f (x + 1 i ∗ y)
[Jcomp , r] = admDiffFD(g , eye (2) , real (c) , imag(c))
[Jfd , r] = admDiffFD(f , [1 1 i] , c)

c = 1 + 2i
f =
@(z) real (cos (sin (2 + 1i) * z))
g =
@(x, y) f (x + 1i * y)
Jcomp =

-3.1734 -6.8347
r = -3.7119
Jfd =

-3.1734 -6.8347
r = -3.7119

7.2 Application of complex arithmetic in forward-mode AD
As we saw in this chapter already, whenever a function is complex analytic we shall be able to
obtain the complex derivative, both components of it, by a single directional derivative. When a
function is complex analytic there is no need to consider the real components individually, or the
derivatives w.r.t. real and imaginary parts for that matter.

When a function is not complex analytic, one can still fall back to considering the real compo-
nents, at the cost of doubling the expense by having to consider twice the number of parameters
or twice the number of directional derivatives.

This basic considerations above also shows the way to go about constructing an AD process for
complex arithmetic: When a elementary computation is complex analytic we may apply arithmetic
propagation (see Section 5.1.1), that is, we can create the local Jacobian and multiply by it.
Otherwise, we have to resort to manipulation of the real and imaginary components, which results
in a structural propagation (Section 5.1.2).

The latter regards those builtins that specifically convert and manipulate between complex
and real numbers, such as conj, abs, arg, real, imag, and complex, which do not have a partial
derivative in complex arithmetic. However, for the purpose of AD the right thing to do in such
situations is to consider the operation on the elementary real numbers, the real and imaginary
components, and provide the corresponding propagation rules for them.

One of the more interesting cases is abs. The corresponding runtime function for the FM
propagation is called g_abs and is defined in ADiMat as follows, not showing any error handling
code:
function [g_r r]= g_abs (g_p , p)

r = abs (p) ;
g_r = (real (p) . ∗ real (g_p) + imag(p) . ∗ imag(g_p)) . / r ;

This is the differentiation of
√

(<p)2 + (=p)2, performed in real terms, in a kind of structural
propagation. Note that this code also handles the real case correctly. If we wanted to distinguish
between a real and a complex case we must tread carefully for pitfalls: we still have to take care
of a possible imaginary component in the derivative, as that must be discarded when p is real:
function [g_r r]= g_abs (g_p , p)

r = abs (p) ;
i f i s rea l (p)

g_r = sign (p) . ∗ real (g_p) ;
else

g_r = g_p ;
g_r = (real (p) . ∗ real (g_p) + imag(p) . ∗ imag(g_p)) . / r ;

end

102

7. Complex arithmetic

If we left out the real in the if branch the code would be wrong. Basically, just because p ∈ R
we cannot expect dp ∈ R since p may be part of a complex valued computation and just happen
to have a zero imginary part – in which case isreal applies. Another possibility is obviously that
the code is in fact real in its entirety but the user chooses to set the derivative direction to a v ∈ C
from the complex numbers.

7.3 Application of complex arithmetic in reverse-mode AD
When it comes to the reverse mode, another interesting aspect comes into play. In particular, the
FM and the RM propagate structurally entirely different derivatives whenever complex arithmetic
occurs.

We saw in the previous Section 3.5 already that the expansion from real to complex numbers
is a case that is different all the other changes to data types and structures. In particular we saw
that it would be wrong to expect an adjoint to be real only because the corresponding program
variable is real. We also saw in the previous section that the same is frue for the FM.

From these considerations already, the correct approach to follow in the adjoint code is to
consider the whole program to be in complex arithmetic, with the real variables just being complex
numbers which happen to have a zero imaginary part.

The Cauchy-Riemann equations describe how the AD process must work on the underlying
real numbers, the real and imaginary parts of complex numbers. The forward mode propagates
derivatives dx ≡ (d<x, d=x) = (d<x/d<t,d=x/d<t), the reverse mode adjoints x ≡ (<x,−=x) =
(d<f/d<x,−d<f/d=x). Thus the FM and RM both yield the LHS of (9) in the real part, but
when they yield complex derivatives they return the LHS and RHS of (10), respectively, in the
imaginary part. Accordingly FM and RMmust produce the same result whenever the differentiated
computations are complex differentiable or analytic. However, they may also yield different results
in the imaginary part when the computations are not analytic, as in that case (10) does not hold.

The derivative on the other side of both (9) and (10), respectively, can be obtained in both FM
and RM by seeding with the imaginary unit i. Then the FM produces the derivative dx/d=c ≡
(d<x/=c,d=x/d=c) while the RM produces the adjoints (−d=f/d<x,d=f/d=x).

For all practical purposes the same effect can also be achieved with wrapper functions that
construct the input from 2N real inputs, call the original function, and split the result into 2M
real outputs.

Contained in these completely symmetrical rules is the case of a real-valued function of a
complex variable. Here the FM produces the real result (d<f/d<c, 0) while the RM produces the
complex result (d<f/d<x,−d<f/d=x).

This means that we can obtain all four possible derivatives of a scalar complex computation
in either the FM or the RM, which is obviously very important in cases where only one of them
is available, and also for testing purposes. Finite differences can be used equivalently to the FM.
However, this is not always possible in Matlab as finite differencing with a complex step changes
the input variable type to complex but certain builtins like atan2 or complex accept only real
arguments.

Obviously it is necessary to provide adjoint propagation rules for all the builtins that specifically
convert and manipulate between complex and real numbers, such as conj, abs, arg, real, imag,
and complex. This class is particularly interesting since for the purpose of complex arithmetic
no function from complex to reals is differentiable. However, for the purpose of AD the right thing
to do in such situations is to consider the operation on the elementary real numbers, the real and
imaginary components, and provide the corresponding propagation rules for these. Unsurprisingly,
these need to be different in the FM and the RM.

Continuing the example of the abs builtin, in the RM we use the following runtime function
a_abs, again shown without error handling code:

function a_p = a_abs (a_r , p)
[a_r a_i] = a_hypot (real (a_r) , real (p) , imag(p)) ;
a_p = complex (a_r , −a_i) ;

103

7. Complex arithmetic

The adjoint is propagated by recurring to the two adjoints of the hypot builtin, which are com-
posed to form a complex number. Any imaginary part of a_r must be discarded.

To give another example, the FM AD code of imag(x) is very obviously imag(g_x), which is
once again the typical structural propagation rule in FM: a self-differentiating one. The adjoint
code however is not so obvious:
function [a_c nr_z] = a_f imag (c , a_z)

z = imag(c) ;
nr_z = z ;
a_c = a_ze ro s1 (c) ;
a_c = a_c + 1 i . ∗ −real (a_z) ;

end

Any imaginary part of a_z must be discarded, and the real part of a_z is placed in the
imaginary part of the adjoint negated.

7.4 Case Study: A fully non-analytic example
A case where all four terms in the Cauchy-Riemann equations are actually different is quite hard
to come by in the real world, but as an example we construct the following function fconjtest:
function r = f c o n j t e s t (x)

r = abs (x) + exp(conj (x)) ;

The conj and abs operations are not analytic, hence the Cauchy-Riemann equations do not hold,
and the FM and the RM yield different values.

Let us calculate the function and its derivatives at one example point x in the complex domain:
x = 2 + 1 i
z = f c o n j t e s t (x)

x = 2 + 1i
z = 6.2284 - 6.2177i

First we apply the FM to compute the directional derivative along v = 1:
admDiffFor (@fcon j te s t , 1 , x)

ans = 4.8868 - 6.2177i

Then we apply the RM to compute the adjoint directional derivative along w = 1:
admDiffRev (@fcon j te s t , 1 , x)

ans = 4.8868 + 5.7705i

At this point we have obtained the derivative d<f
d<x with both the FM and the RM. Furthermore,

the FM yielded as the imaginary component the derivative d=f
d<x while the RM yielded as the

imaginary component the derivative −d<f
d=x .

As we saw already, we can verify both of these different imaginary components with the other
AD mode, respectively. Seeded with i, the FM yields d<f

d=x in the real component.

admDiffFor (@fcon j te s t , i , x)

ans = -5.7705 - 3.9923i

Seeded with i, the RM yields −d=f
d<x in the real component, since ix = d<f

d=x + i d<f
d<x and (10).

admDiffRev (@fcon j te s t , i , x)

104

7. Complex arithmetic

ans = 6.2177 - 3.9923i

And finally, both the FM and the RM, when seeded with i, yield the derivative d=f
d=x in the

imaginary component. If we want to obtain the derivatives of the two real components in this
computation w.r.t. to the two real components of the input, then we may use either the FM or
the RM, and in either case we require two directional derivatives.

We check both of these directional derivatives against finite differences using the composition
method:

admDiffFD(@(x , y) f c o n j t e s t (complex (x , y)) , eye (2) , real (x) , imag(x))

ans =
4.8868 - 6.2177i -5.7705 - 3.9923i

7.5 Case study: the norm function and application to complex opti-
mization

The derivative of a real objective function w.r.t. the imaginary parts of the inputs is required
in the field of complex optimization [SBL12; SBL13]. There clearly may be a dependency of a
real function f : CN → RM on the imaginary part of an input variable. This is the directional
derivative d<f/d=c = limh→0 f(c+ ih)/h. We can either compute this value with the RM in time
overhead O(M) or with the FM in time overhead O(2N) = O(N) using one of the techniques
described above. As an example consider the following, where we differentiate the norm builtin
applied to a complex argument:

function r = fnormtest (x)
r = norm(x) ;

x = 1 + 2 i
z = fnormtest (x)
J1 = admDiffFor (@fnormtest , 1 , x)
J2 = admDiffRev (@fnormtest , 1 , x)
J3 = admDiffFor (@fnormtest , [1 i] , x)
J4 = admDiffFD(@(x , y) fnormtest (complex (x , y)) , eye (2) , real (x) , imag(x))
J5 = admDiffRev (@fnormtest , [1 ; i] , x)

x = 1 + 2i
z = 2.2361
J1 = 0.44721
J2 = 0.44721 - 0.89443i
J3 =

0.44721 0.89443
J4 =

0.44721 0.89443
J5 =

0.44721 - 0.89443i
0 + 0i

The RM yields a complex derivative (in J2) with the RHS of (10) as the imaginary part,
while the FM derivative is real (in J1). The derivative in the imaginary part of the adjoint result
can also be obtained either with the FM or FD by seeding with i (in J3) or by constructing the
complex input from two reals and thus differentiating w.r.t. the imaginary part explicitely (in
J4). When we seed with i in the reverse mode, we recompute the imaginary part of J1, and also
d=f
d=x : both must be zero (in J5).

105

8. Conclusion

8 Conclusion
In this work we present the overall architecture and design of the reverse mode of automatic
differentiation for MATLAB in the ADiMat source transformation. Several key topics are covered
that are fundamental to the functionality of the generated adjoint code.

A convenient use interface was created that enables the user to easily apply ADiMat to his nu-
merical function in any of the available modes of automatic differentiation: the forward mode and
the reverse mode, both in scalar and vector mode respectively, and the forward-over-reverse mode
for Hessian evaluations. The user can conveniently specify a seed matrix and is presented with a
product of that seed matrix with the Jacobian or Hessian matrix in the common mathematical
sense in return, with ADiMat automatically generating the required AD code and running it as
required, including sparsity exploitation when possible. The common numerical differenrentiation
methods using finite differences and the so called complex step method are provided with the same
interface.

An efficient I/O framework called RIOS is available for the storage of large scale datasets called
stacks that arise in the reverse mode evaluation. However this framework must clearly be seen as a
bridging technology. The existing implementation of the reverse mode in ADiMat can also hope to
benefit from future advances in computational technology, where an ever closer integration of large
and fast memory with CPUs and FPUs is expected to occur. These advances will relativate the
peculiarly large memory requirements of the reverse mode. Whether or not a special prefetching
layer for the stack when read in reverse direction will still be needed then remains to be seen.

In many cases the adjoint computations that arise from MATLAB are not expressible in plain
expressions, due to the fact that certain implicit behaviour in the forward evaluation must be
undone, like binary scalar expansion (BSX), array reshaping, type propagation, data manipulation.
This sometimes intricate logic must be outsourced into several runtime functions that arise in the
adjoint code. The adjoint code generator can be flexibly configured to handle well-behaved code
more efficiently by omitting some or all of these.

The propagation from real to complex values that can occur in MATLAB is another example for
implicit behaviour in forward evaluation of MATLAB that requires almost no special consideration
in the case of the forward mode of AD, but which becomes somewhat intricate in the reverse
mode. In this case however it is somewhat surprisingly wrong to undo the type propagation in
the adjoint code. More generally we can state that in complex-valued arithmetic, when seed with
1, the FM and RM compute the two repective sides of the second of the famous Cauchy-Riemann
equations in the imaginary component. This can result in different results whenever a function is
not analytic, i.e. complex differentiable. However, one obtains the correct derivatives of the real
and imaginary part of the inputs w.r.t. those of the outputs, while they exist. For example, any
function mapping complex to reals must have a zero imaginary part in its derivative, by definition,
and hence in the forward mode. The adjoint evaluation in the reverse mode however naturally
contains the dependence of the real part of the function w.r.t. the imaginary part of the inputs.
This is of course interesting for the field of complex optimization. However, the same result can
equivalently be obtained through the forward mode, by computing derivatives along the direction
of the imaginary unit.

Another fundamental aspect in the development of ADiMat are more generally the many high-
level mathematical builtin functions in MATLAB. Each of them must be treated carefully with
the adequate derivative rules. Among those handled by ADiMat that have been added over the
years of development are among many others the Bessel and the Legendre functions, the matrix
exponential expm, the convolution operator conv and the Kronecker product kron. Arguably
the most desirable case is when the partial derivative in the form of the local Jacobian matrix is
available, as this allows for a very uniform and effective derivative propagation. This interestingly
is also the only way to handle subasign and subsref correctly in the adjoint code, even though
the only case which strictly mandates it is very much a fringe case, namely the occurence of
repeated indices in the index set. Another option are so called structural propagations, where for
example mean and fft are differentiated by themselves. This however requires that the derivative
class provides the corresponding methods and in most cases the propagation in RM will be more

106

8. Conclusion

involved. A subclass of structural propagation is the application of AD to a given algorithm.
This very elegant technique is not only used internally in ADiMat for certain operations where a
derivative is especially hard to come by mathematically, in particular certain matrix operations
like expm, chol and qr, but it is also open to any user of ADiMat.

Finally we present the novel method of compiler construction that we use in the adjoint code
generator. The AST is represented by an in-memory XML document that is transformed step
by step by several XSLT stylesheets. In particular the use of XML namespaces proves itself very
useful in the handling of AST annotations. We also present some generic methods and techniqes of
organizing XSLT pipelines. Another important aspect for enabling this programming paradigma
is of course the provision of the input problem representation in XML in the first place. While in
the case of ADiMat an existing parser for MATLAB was augmented to enable the XML output
of the AST, we also discuss generic methods to handle text based input in an XML processing
context by special input filters, some of which have been developed by ourself.

107

REFERENCES

References
[AÅD12] Joel Andersson, Johan Åkesson, and Moritz Diehl. “CasADi: A Symbolic Package

for Automatic Differentiation and Optimal Control”. In: Recent Advances in Algo-
rithmic Differentiation. Ed. by Shaun Forth et al. Vol. 87. Lecture Notes in Com-
putational Science and Engineering. Berlin, Heidelberg: Springer Berlin Heidelberg,
2012, pp. 297–307. isbn: 978-3-642-30023-3. doi: 10.1007/978-3-642-30023-3.

[ACK03] Giuseppe Attardi, Antonio Cisternino, and Andrew Kennedy. “CodeBricks: code
fragments as building blocks”. In: SIGPLAN Not. 38.10 (June 2003), pp. 66–74.
issn: 0362-1340. doi: 10.1145/966049.777396. url: http://doi.acm.org/10.
1145/966049.777396.

[AMH09] Awad H. Al-Mohy and Nicholas J. Higham. “Computing the Fréchet Derivative of
the Matrix Exponential, with an Application to Condition Number Estimation”. In:
SIAM Journal on Matrix Analysis and Applications 30.4 (Jan. 2009), pp. 1639–1657.
doi: 10.1137/080716426. url: https://dl.acm.org/doi/10.1137/080716426.

[Ayg+09] E. Ayguade et al. “The Design of OpenMP Tasks”. In: IEEE Transactions on Parallel
and Distributed Systems 20.3 (2009), pp. 404–418.

[Bat77] KJ Bathe. ADIMAT, a finite element program for automatic dynamic incremen-
tal analysis of temperature. Tech. rep. Massachusetts Institute of Technology, Cam-
bridge, MA, 1977.

[Bay+17] Atilim Günes Baydin et al. “Automatic Differentiation in Machine Learning: A Sur-
vey”. In: J. Mach. Learn. Res. 18.1 (Jan. 2017), 5595–5637. issn: 1532-4435.

[BB08] Bradley M. Bell and James V. Burke. “Algorithmic Differentiation of Implicit Func-
tions and Optimal Values”. In: Advances in Automatic Differentiation. Ed. by Chris-
tian H. Bischof et al. Vol. 64. Lecture Notes in Computational Science and Engineer-
ing. Berlin: Springer, 2008, pp. 67–77. isbn: 978-3-540-68935-5. doi: 10.1007/978-
3-540-68942-3_7.

[BBV05] Christian H. Bischof, H. Martin Bücker, and Andre Vehreschild. “A Macro Language
for Derivative Definition in ADiMat”. In: Automatic Differentiation: Applications,
Theory, and Implementations. Ed. by H. M. Bücker et al. Vol. 50. Lecture Notes in
Computational Science and Engineering. New York, NY: Springer, 2005, pp. 181–
188. doi: 10.1007/3-540-28438-9_16.

[BCG93] Christian H. Bischof, George F. Corliss, and Andreas Griewank. “Structured Second-
and Higher-Order Derivatives Through Univariate Taylor Series”. In: Optimization
Methods and Software 2 (1993), pp. 211–232.

[Ben96] Jochen Benary. “Parallelism in the Reverse Mode”. In: Computational Differentia-
tion: Techniques, Applications, and Tools. Ed. by Martin Berz et al. Philadelphia,
PA: SIAM, 1996, pp. 137–147. isbn: 0–89871–385–4.

[Ber+10] Evangelos Bertakis et al. “Validated simulation of droplet sedimentation with finite-
element and level-set methods”. In: Chemical Engineering Science 65.6 (2010), pp. 2037
–2051. issn: 0009-2509. doi: https://doi.org/10.1016/j.ces.2009.11.043. url:
http://www.sciencedirect.com/science/article/pii/S0009250909008446.

[Ber+96] Martin Berz et al., eds. Computational Differentiation: Techniques, Applications and
Tools. Philadelphia, PA: SIAM, 1996. isbn: 0–89871–385–4.

[BEV06] H. Martin Bücker, Atya Elsheikh, and Andre Vehreschild. “A System for Interfacing
MATLAB with External Software Geared Toward Automatic Differentiation”. In:
Mathematical Software - ICMS 2006. Ed. by Andrés Iglesias and Nobuki Takayama.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2006, pp. 373–384. isbn: 978-3-540-
38086-3.

108

https://doi.org/10.1007/978-3-642-30023-3
https://doi.org/10.1145/966049.777396
http://doi.acm.org/10.1145/966049.777396
http://doi.acm.org/10.1145/966049.777396
https://doi.org/10.1137/080716426
https://dl.acm.org/doi/10.1137/080716426
https://doi.org/10.1007/978-3-540-68942-3_7
https://doi.org/10.1007/978-3-540-68942-3_7
https://doi.org/10.1007/3-540-28438-9_16
https://doi.org/https://doi.org/10.1016/j.ces.2009.11.043
http://www.sciencedirect.com/science/article/pii/S0009250909008446

REFERENCES

[Béz+03] Jean Bézivin et al. “First experiments with the ATL model transformation language:
Transforming XSLT into XQuery”. In: 2nd OOPSLA Workshop on Generative Tech-
niques in the context of Model Driven Architecture. 2003, p. 50.

[BG92] Christian Bischof and Andreas Griewank. “ADIFOR – A FORTRAN system for
portable automatic differentiation”. In: 4th Symposium on Multidisciplinary Analysis
and Optimization. 1992, pp. 433–441. doi: 10.2514/6.1992- 4744. url: https:
//arc.aiaa.org/doi/abs/10.2514/6.1992-4744.

[BGJ91] Christian Bischof, Andreas Griewank, and David Juedes. “Exploiting parallelism in
automatic differentiation”. In: Proceedings of the 1991 International Conference on
Supercomputing. Ed. by Elias Houstis and Yoichi Muraoka. Also appeared as Preprint
MCS–P204–0191, Mathematics and Computer Science Division, Argonne National
Laboratory, Argonne, Ill., January 1991. Baltimore, Md.: ACM Press, 1991, pp. 146–
153. doi: 10.1145/109025.109067.

[BGN00] R. H. Byrd, J. C. Gilbert, and J. Nocedal. “A Trust Region Method Based on Interior
Point Techniques for Nonlinear Programming”. In: Mathematical Programming 89.1
(2000), pp. 149–185.

[BH96] Christian H. Bischof and Mohammad R. Haghighat. “Hierarchical Approaches to
Automatic Differentiation”. In: Computational Differentiation: Techniques, Applica-
tions, and Tools. Ed. by Martin Berz et al. Philadelphia, PA: SIAM, 1996, pp. 83–94.
isbn: 0–89871–385–4.

[Bha+03] Suparna Bhattacharya et al. “Asynchronous I/O support in Linux 2.5”. In: Proceed-
ings of the Linux Symposium. 2003, pp. 371–386.

[BHN99] R. H. Byrd, Mary E. Hribar, and Jorge Nocedal. “An Interior Point Algorithm for
Large-Scale Nonlinear Programming”. In: SIAM Journal on Optimization 9.4 (1999),
pp. 877–900.

[Bis+02] C. H. Bischof et al. “Combining source transformation and operator overloading
techniques to compute derivatives for MATLAB programs”. In: Proceedings. Second
IEEE International Workshop on Source Code Analysis and Manipulation. 2002,
pp. 65–72.

[Bis+02] Christian H. Bischof et al. “Combining Source Transformation and Operator Over-
loading Techniques to Compute Derivatives for MATLAB Programs”. In: Proceedings
of the Second IEEE International Workshop on Source Code Analysis and Manipula-
tion (SCAM 2002). Los Alamitos, CA, USA: IEEE Computer Society, 2002, pp. 65–
72. doi: 10.1109/SCAM.2002.1134106.

[Bis+08] Christian H. Bischof et al., eds. Advances in Automatic Differentiation. Vol. 64.
Lecture Notes in Computational Science and Engineering. Berlin: Springer, 2008.
isbn: 978-3-540-68935-5. doi: 10.1007/978-3-540-68942-3.

[Bis91] Christian H. Bischof. “Issues in Parallel Automatic Differentiation”. In: Automatic
Differentiation of Algorithms: Theory, Implementation, and Application. Ed. by An-
dreas Griewank and George F. Corliss. Philadelphia, PA: SIAM, 1991, pp. 100–113.
isbn: 0–89871–284–X.

[Bis+92a] Christian Bischof et al. “ADIFOR: Automatic differentiation in a source translator
environment”. In: Papers from the international symposium on Symbolic and alge-
braic computation. 1992, pp. 294–302.

[Bis+92b] Christian H. Bischof et al. “ADIFOR: Generating Derivative Codes from Fortran
Programs”. In: Scientific Programming 1.1 (1992), pp. 11–29.

[Bis+96] Christian Bischof et al. “ADIFOR 2.0: Automatic differentiation of Fortran 77 pro-
grams”. In: IEEE Computational Science and Engineering 3.3 (1996), pp. 18–32.

109

https://doi.org/10.2514/6.1992-4744
https://arc.aiaa.org/doi/abs/10.2514/6.1992-4744
https://arc.aiaa.org/doi/abs/10.2514/6.1992-4744
https://doi.org/10.1145/109025.109067
https://doi.org/10.1109/SCAM.2002.1134106
https://doi.org/10.1007/978-3-540-68942-3

REFERENCES

[BLV03] Christian Bischof, Bruno Lang, and Andre Vehreschild. “Automatic Differentiation
for MATLAB Programs”. In: PAMM 2.1 (2003), pp. 50–53. doi: 10.1002/pamm.
200310013. url: https://onlinelibrary.wiley.com/doi/abs/10.1002/pamm.
200310013.

[BMC+04] Paul Biron, Ashok Malhotra, World Wide Web Consortium, et al. “XML schema
part 2: Datatypes”. In: W3C Recommendation (2004). url: https://www.w3.org/
TR/xmlschema-2/.

[Bou06] Jake Bouvrie. Notes on convolutional neural networks. Tech. rep. cogprints.org, 2006.
[BPV08] H. Martin Bücker, Monika Petera, and Andre Vehreschild. “Code Optimization Tech-

niques in Source Transformations for Interpreted Languages”. In: Advances in Auto-
matic Differentiation. Ed. by Christian H. Bischof et al. Springer, 2008, pp. 223–233.
isbn: 978-3-540-68935-5. doi: 10.1007/978-3-540-68942-3_20.

[Bra+00] Tim Bray et al. Extensible markup language (XML) 1.0. 2000. url: http://www.
w3.org/TR/xml/.

[BRV08] H. M. Bücker, A. Rasch, and A. Vehreschild. “Automatic Generation of Parallel
Code for Hessian Computations”. In: OpenMP Shared Memory Parallel Program-
ming, Proceedings of the International Workshops IWOMP 2005 and IWOMP 2006,
Eugene, OR, USA, June 1–4, 2005, and Reims, France, June 12–15, 2006. Ed. by M.
S. Mueller et al. Vol. 4315. Lecture Notes in Computer Science. Berlin / Heidelberg:
Springer, 2008, pp. 372–381. doi: 10.1007/978-3-540-68555-5_30.

[Büc02] H. M. Bücker. Hierarchical Algorithms for Automatic Differentiation. Habilitation-
sschrift. Aachen: Faculty of Mathematics, Computer Science, and Natural Sciences,
Aachen University, Nov. 2002.

[Büc+05] H. Martin Bücker et al., eds. Automatic Differentiation: Applications, Theory, and
Implementations. Vol. 50. Lecture Notes in Computational Science and Engineering.
New York, NY: Springer, 2005. doi: 10.1007/3-540-28438-9.

[Büc+10] H. M. Bücker et al. “Discrete and Continuous Adjoint Approaches to Estimate
Boundary Heat Fluxes in Falling Films”. In: Optimization Methods & Software 26.1
(2010), pp. 105–125. doi: 10.1080/10556780903341711.

[Büs+14] Henrik Büsing et al. “Using exact Jacobians in an implicit Newton method for solving
multiphase flow in porous media”. In: Int. J. Computational Science and Engineering
9 (2014), pp. 499–508.

[BV08] H. Martin Bücker and Andre Vehreschild. “Coping with a Variable Number of Argu-
ments when Transforming MATLAB Programs”. In: Advances in Automatic Differ-
entiation. Ed. by Christian H. Bischof et al. Vol. 64. Lecture Notes in Computational
Science and Engineering. Berlin: Springer, 2008, pp. 211–222. isbn: 978-3-540-68935-
5. doi: 10.1007/978-3-540-68942-3_19.

[BW17] H. M. Bücker and D. Walther. “Automatic Differentiation of Computer Programs
in the Time and Frequency Domain”. In: 2017 European Conference on Electrical
Engineering and Computer Science (EECS). 2017, pp. 335–340.

[BW18] H. Martin Bücker and Johannes Willkomm. “Estimating the expansion coefficients
of a geomagnetic field model using first-order derivatives of associated Legendre
functions”. In: Optimization Methods and Software 33.4-6 (2018), pp. 924–944. doi:
10.1080/10556788.2018.1448086. url: https://doi.org/10.1080/10556788.
2018.1448086.

[BWZ70] David Barton, I. M. Willers, and R. V. M. Zahar. “The Automatic Solution of Or-
dinary Differential Equations by the Method of Taylor Series.” In: The Computer
Journal 14.3 (1970), pp. 243–248.

[CD+99] James Clark, Steve DeRose, et al. XML path language (XPath). 1999. url: http:
//www.w3.org/TR/xpath.

110

https://doi.org/10.1002/pamm.200310013
https://doi.org/10.1002/pamm.200310013
https://onlinelibrary.wiley.com/doi/abs/10.1002/pamm.200310013
https://onlinelibrary.wiley.com/doi/abs/10.1002/pamm.200310013
https://www.w3.org/TR/xmlschema-2/
https://www.w3.org/TR/xmlschema-2/
https://doi.org/10.1007/978-3-540-68942-3_20
http://www.w3.org/TR/xml/
http://www.w3.org/TR/xml/
https://doi.org/10.1007/978-3-540-68555-5_30
https://doi.org/10.1007/3-540-28438-9
https://doi.org/10.1080/10556780903341711
https://doi.org/10.1007/978-3-540-68942-3_19
https://doi.org/10.1080/10556788.2018.1448086
https://doi.org/10.1080/10556788.2018.1448086
https://doi.org/10.1080/10556788.2018.1448086
http://www.w3.org/TR/xpath
http://www.w3.org/TR/xpath

REFERENCES

[CH03] Krzysztof Czarnecki and Simon Helsen. “Classification of model transformation ap-
proaches”. In: Proceedings of the 2nd OOPSLA Workshop on Generative Techniques
in the Context of the Model Driven Architecture. Vol. 45. 3. USA. 2003, pp. 1–17.

[Che+08] Y. Chen et al. “Hiding I/O latency with pre-execution prefetching for parallel applica-
tions”. In: International Conference for High Performance Computing, Networking,
Storage and Analysis (SC 2008). 2008, pp. 1–10. doi: 10.1109/SC.2008.5213209.

[Che09] Y. Chen. “A Hybrid Data Prefetching Architecture for Data-Access Efficiency”. PhD
thesis. Department of Computer Science, Illinois Institute of Technology, 2009.

[Cho02] Noam Chomsky. Syntactic structures. Berlin New York: Mouton de Gruyter, 2002.
isbn: 3110172798.

[Chr92] Bruce Christianson. “Automatic Hessians by Reverse Accumulation”. In: IMA J.
Numerical Anal. 12 (1992), pp. 135–150. doi: 10.1093/imanum/12.2.135.

[Cla01] James Clark. A RELAX NG validator in Java. 2001. url: http://www.thaiopensource.
com/relaxng/jing.html.

[Cla02a] James Clark. An algorithm for RELAX NG validation. 2002. url: http://www.
thaiopensource.com/relaxng/derivative.html.

[Cla02b] James Clark. RELAX NG Compact Syntax. Nov. 2002. url: https://www.oasis-
open.org/committees/relax-ng/compact-20021121.html.

[Cla03] James Clark. Modular Namespaces (MNS). 2003. url: https://relaxng.org/
jclark/mns.html.

[Cla+99] James Clark et al. “XSL transformations (XSLT)”. In: World Wide Web Consortium
(W3C) 103 (1999). url: http://www.w3.org/TR/xslt.

[CM01] James Clark and Makoto Murata. RELAX NG Specification. Committee Speci-
fication 3 December 2001. Dec. 2001. url: https : / / www . oasis - open . org /
committees/relax-ng/spec-20011203.html.

[CM05] P. Cusdin and J.-D. Müller. “On the Performance of Discrete Adjoint CFD Codes
using Automatic Differentiation”. In: International Journal of Numerical Methods
in Fluids 47.6-7 (2005). http://www.ea.qub.ac.uk/pcusdin, pp. 939–945. url: http:
//www3.interscience.wiley.com/cgi-bin/abstract/109880352/ABSTRACT.

[Cor+02] George Corliss et al., eds. Automatic Differentiation of Algorithms: From Simulation
to Optimization. Computer and Information Science. New York, NY: Springer, 2002.

[Cor+92] George F. Corliss et al. Automatic Differentiation Applied to Unsaturated Flow —
ADOL–C Case Study. Technical Memorandum ANL/MCS–TM–162. Argonne, Ill.:
Mathematics and Computer Science Division, Argonne National Laboratory, Apr.
1992.

[Cou+03] F. Courty et al. “Reverse automatic differentiation for optimum design: from adjoint
state assembly to gradient computation”. In: Optimization Methods and Software
18.5 (2003), pp. 615–627.

[CP03] V Cechticky and A Pasetti. “Generative programming for space applications”. In:
DASIA 2003. Vol. 532. 2003, p. 3.

[CR84] George F. Corliss and Louis B. Rall. “Automatic generation of Taylor series in Pascal-
SC: Basic operations and applications to differential equations”. In: Trans. of the
First Army Conference on Applied Mathematics and Computing (Washington, D.C.,
1983). Research Triangle Park, N.C.: ARO Rep. 84-1, U. S. Army Res. Office, 1984,
pp. 177–209.

[Das07] Vinu V Das. Compiler Design using FLEX and YACC. PHI Learning Pvt. Ltd.,
2007.

111

https://doi.org/10.1109/SC.2008.5213209
https://doi.org/10.1093/imanum/12.2.135
http://www.thaiopensource.com/relaxng/jing.html
http://www.thaiopensource.com/relaxng/jing.html
http://www.thaiopensource.com/relaxng/derivative.html
http://www.thaiopensource.com/relaxng/derivative.html
https://www.oasis-open.org/committees/relax-ng/compact-20021121.html
https://www.oasis-open.org/committees/relax-ng/compact-20021121.html
https://relaxng.org/jclark/mns.html
https://relaxng.org/jclark/mns.html
http://www.w3.org/TR/xslt
https://www.oasis-open.org/committees/relax-ng/spec-20011203.html
https://www.oasis-open.org/committees/relax-ng/spec-20011203.html
http://www3.interscience.wiley.com/cgi-bin/abstract/109880352/ABSTRACT
http://www3.interscience.wiley.com/cgi-bin/abstract/109880352/ABSTRACT

REFERENCES

[DB17] Frederik De Bleser. opentype.js – JavaScript parser/writer for OpenType and True-
Type fonts. 2017. url: https://opentype.js.org/.

[Din+07] Xiaoning Ding et al. “DiskSeen: exploiting disk layout and access history to enhance
I/O prefetch”. In: 2007 USENIX Annual Technical Conference, Proceedings of the.
USENIX Association. Santa Clara, California, USA, 2007, pp. 1–14.

[DL09] P. M. Dickens and J. Logan. “Y-lib: A user level library to increase the perfor-
mance of MPI-IO in a Lustre file system environment”. In: Proceedings of the 18th
ACM international symposium on high performance distributed computing. HPDC
’09. Garching, Germany: ACM, 2009, pp. 31–38. isbn: 978-1-60558-587-1. doi: 10.
1145/1551609.1551617. url: http://doi.acm.org/10.1145/1551609.1551617.

[DS00] Charles Donnelly and Richard Stallman. “Bison. the yacc-compatible parser gener-
ator”. In: (2000).

[ELN06] Javier Esclapés and Mercedes Llorens Nicolau. ADIMAT, asistente de diagramas de
fases para ingenieros de materiales. 2006. url: http://rua.ua.es/dspace/handle/
10045/2821.

[Fak] Fakturama – Die kostenlose OpenSource Faktura-Software. July 2020. url: https:
//www.fakturama.info/.

[Flo+14] Anisia Florescu et al. “A Majorize-Minimize Memory Gradient method for complex-
valued inverse problems”. In: Signal Processing 103 (2014). Image Restoration and
Enhancement: Recent Advances and Applications, pp. 285 –295. issn: 0165-1684.
doi: https://doi.org/10.1016/j.sigpro.2013.09.026. url: http://www.
sciencedirect.com/science/article/pii/S0165168413003915.

[For06] Shaun A. Forth. “An Efficient Overloaded Implementation of Forward Mode Auto-
matic Differentiation in MATLAB”. In: ACM Transactions on Mathematical Soft-
ware 32.2 (June 2006), pp. 195–222. url: http://doi.acm.org/10.1145/1141885.
1141888.

[For09] Message Passing Interface Forum. MPI: A Message-Passing Interface Standard, Ver-
sion 2.2. Message Passing Interface Forum, 2009.

[For+12] S. Forth et al., eds. Recent Advances in Algorithmic Differentiation. Vol. 87. Lecture
Notes in Computational Science and Engineering. Berlin: Springer, 2012. isbn: 978-
3-642-30022-6. doi: 10.1007/978-3-642-30023-3.

[Fou20] Python Software Foundation. XPath and XSLT with lxml. July 2020. url: https:
//lxml.de/xpathxslt.html.

[Gay15] David M Gay. “The AMPL modeling language: An aid to formulating and solving
optimization problems”. In: Numerical analysis and optimization. Springer, 2015,
pp. 95–116.

[Gay91] David M Gay. “Automatic differentiation of nonlinear AMPL models”. In: Automatic
Differentiation of Algorithms: Theory, Implementation, and Application (1991), pp. 61–
73.

[Gay96] David M Gay. “More AD of nonlinear AMPL models: computing Hessian information
and exploiting partial separability”. In: Computational Differentiation: Applications,
Techniques, and Tools (1996), pp. 173–184.

[GBC16] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning. Cambridge,
Massachusetts: The MIT Press, 2016. isbn: 9780262035613. url: https://www.
deeplearningbook.org.

[GC91] Andreas Griewank and George F. Corliss, eds. Automatic Differentiation of Algo-
rithms: Theory, Implementation, and Application. Philadelphia, PA: SIAM, 1991.
isbn: 0–89871–284–X.

112

https://opentype.js.org/
https://doi.org/10.1145/1551609.1551617
https://doi.org/10.1145/1551609.1551617
http://doi.acm.org/10.1145/1551609.1551617
http://rua.ua.es/dspace/handle/10045/2821
http://rua.ua.es/dspace/handle/10045/2821
https://www.fakturama.info/
https://www.fakturama.info/
https://doi.org/https://doi.org/10.1016/j.sigpro.2013.09.026
http://www.sciencedirect.com/science/article/pii/S0165168413003915
http://www.sciencedirect.com/science/article/pii/S0165168413003915
http://doi.acm.org/10.1145/1141885.1141888
http://doi.acm.org/10.1145/1141885.1141888
https://doi.org/10.1007/978-3-642-30023-3
https://lxml.de/xpathxslt.html
https://lxml.de/xpathxslt.html
https://www.deeplearningbook.org
https://www.deeplearningbook.org

REFERENCES

[Gil08] Mike B. Giles. “Collected Matrix Derivative Results for Forward and Reverse Mode
Algorithmic Differentiation”. In:Advances in Automatic Differentiation. Ed. by Chris-
tian H. Bischof et al. Vol. 64. Lecture Notes in Computational Science and Engineer-
ing. Berlin: Springer, 2008, pp. 35–44. isbn: 978-3-540-68935-5. doi: 10.1007/978-
3- 540- 68942- 3_4. url: https://people.maths.ox.ac.uk/gilesm/files/
AD2008.pdf.

[GJU96] Andreas Griewank, David Juedes, and Jean Utke. “ADOL–C, A Package for the
Automatic Differentiation of Algorithms Written in C/C++”. In: ACM Trans. Math.
Software 22.2 (1996), pp. 131–167.

[GK03] Ralf Giering and Thomas Kaminski. “Applying TAF to generate efficient derivative
code of Fortran 77-95 programs”. In: PAMM 2.1 (2003), pp. 54–57. doi: 10.1002/
pamm.200310014. url: https://onlinelibrary.wiley.com/doi/abs/10.1002/
pamm.200310014.

[GKS05] R. Giering, T. Kaminski, and T. Slawig. “Generating efficient derivative code with
TAF: Adjoint and tangent linear Euler flow around an airfoil”. In: Future Generation
Computer Systems 21.8 (2005), pp. 1345 –1355. issn: 0167-739X. doi: 10.1016/j.
future.2004.11.003. url: http://www.sciencedirect.com/science/article/
pii/S0167739X04001785.

[Gnu] GNUCash – Free Accounting Software. July 2020. url: https://www.gnucash.org/.
[GR13] S. Gross and A. Reusken. “Numerical simulation of continuum models for fluid-

fluid interface dynamics”. In: European Physical Journal Special Topics 222.1 (2013),
pp. 211 –239. issn: 1951-6355. doi: 10.1140. url: https://doi.org/10.1140/
epjst/e2013-01836-9.

[Gri+99] Andreas Griewank et al. ADOL-C: A Package for the Automatic Differentiation of
Algorithms Written in C/C++. Tech. rep. Updated version of the paper published
in ACM Trans. Math. Software 22, 1996, 131–167. Institute of Scientific Computing,
Technical University Dresden, 1999.

[Gro+08] W. Gropp et al. “Self-consistent MPI-IO Performance Requirements and Expecta-
tions”. In: Recent Advances in Parallel Virtual Machine and Message Passing In-
terface. Ed. by A. Lastovetsky, T. Kechadi, and J. Dongarra. Vol. 5205. Lecture
Notes in Computer Science. 10.1007/978-3-540-87475-1_25. Springer Berlin/Heidel-
berg, 2008, pp. 167–176. isbn: 978-3-540-87474-4. url: http://dx.doi.org/10.
1007/978-3-540-87475-1_25.

[Gru02] Mikhail Grushinskiy. XMLStarlet Command Line XML Toolkit. 2002. url: http:
//xmlstar.sourceforge.net/.

[GTL99] William Gropp, Rajeev Thakur, and Ewing Lusk. Using MPI-2: Advanced features
of the message passing interface. MIT press, 1999.

[GUW00] Andreas Griewank, Jean Utke, and Andrea Walther. “Evaluating Higher Derivative
Tensors by Forward Propagation of Univariate Taylor Series”. In: Mathematics of
Computation 69 (2000), pp. 1117–1130.

[GVW96] G. A. Gibson, J. S. Vitter, and J. Wilkes. “Strategic directions in storage I/O issues
in large-scale computing”. In: ACM Computing Surveys 28.4 (1996), pp. 779–793.

[GW00] Andreas Griewank and Andrea Walther. “Algorithm 799: Revolve: An Implemen-
tation of Checkpoint for the Reverse or Adjoint Mode of Computational Differen-
tiation”. In: ACM Transactions on Mathematical Software 26.1 (Mar. 2000). Also
appeared as Technical University of Dresden, Technical Report IOKOMO-04-1997.,
pp. 19–45. issn: 0098-3500. url: http://doi.acm.org/10.1145/347837.347846.

113

https://doi.org/10.1007/978-3-540-68942-3_4
https://doi.org/10.1007/978-3-540-68942-3_4
https://people.maths.ox.ac.uk/gilesm/files/AD2008.pdf
https://people.maths.ox.ac.uk/gilesm/files/AD2008.pdf
https://doi.org/10.1002/pamm.200310014
https://doi.org/10.1002/pamm.200310014
https://onlinelibrary.wiley.com/doi/abs/10.1002/pamm.200310014
https://onlinelibrary.wiley.com/doi/abs/10.1002/pamm.200310014
https://doi.org/10.1016/j.future.2004.11.003
https://doi.org/10.1016/j.future.2004.11.003
http://www.sciencedirect.com/science/article/pii/S0167739X04001785
http://www.sciencedirect.com/science/article/pii/S0167739X04001785
https://www.gnucash.org/
https://doi.org/10.1140
https://doi.org/10.1140/epjst/e2013-01836-9
https://doi.org/10.1140/epjst/e2013-01836-9
http://dx.doi.org/10.1007/978-3-540-87475-1_25
http://dx.doi.org/10.1007/978-3-540-87475-1_25
http://xmlstar.sourceforge.net/
http://xmlstar.sourceforge.net/
http://doi.acm.org/10.1145/347837.347846

REFERENCES

[GW08a] Andreas Griewank and AndreaWalther. Evaluating Derivatives: Principles and Tech-
niques of Algorithmic Differentiation. 2nd. Other Titles in Applied Mathematics 105.
Philadelphia, PA: SIAM, 2008. isbn: 978–0–898716–59–7. url: http://www.ec-
securehost.com/SIAM/OT105.html.

[GW08b] Andreas Griewank and AndreaWalther. Evaluating Derivatives: Principles and Tech-
niques of Algorithmic Differentiation. 2nd. Other Titles in Applied Mathematics 105.
Philadelphia, PA: SIAM, 2008. isbn: 978–0–898716–59–7.

[HAP05] Laurent Hascoët and Mauricio Araya-Polo. “The Adjoint Data-Flow Analyses: For-
malization, Properties, and Applications”. In: Automatic Differentiation: Applica-
tions, Theory, and Implementations. Ed. by H. M. Bücker et al. Vol. 50. Lecture
Notes in Computational Science and Engineering. New York, NY: Springer, 2005,
pp. 135–146. doi: 10.1007/3-540-28438-9_12.

[HH16] Desmond J Higham and Nicholas J Higham. MATLAB guide. Vol. 150. Siam, 2016.
[HHG05] Patrick Heimbach, Chris Hill, and Ralf Giering. “An efficient exact adjoint of the

parallel MIT General Circulation Model, generated via automatic differentiation”.
In: Future Generation Computer Systems 21.8 (2005), pp. 1356 –1371. issn: 0167-
739X. doi: 10.1016/j.future.2004.11.010. url: http://www.sciencedirect.
com/science/article/pii/S0167739X04001797.

[HNN02] Paul D Hovland, Uwe Naumann, and Boyana Norris. “An XML-based platform for
semantic transformation of numerical programs”. In: Software Engineering and Ap-
plications (2002), pp. 530–538.

[HNP05] Laurent Hascoët, Uwe Naumann, and Valérie Pascual. ““To be recorded” analysis in
reverse-mode automatic differentiation”. In: Future Generation Computer Systems
21.8 (2005), pp. 1401–1417. doi: 10.1016/j.future.2004.11.009.

[Hof87] Matthias Hofmann. “Experimental and mathematical investigation of response char-
acteristics and aging phenomena in safety fuse elements”. PhD thesis. Technische
Univ., Brunswick (Germany, F.R.)., Jan. 1987.

[Hon+14] Sungpack Hong et al. “Simplifying scalable graph processing with a domain-specific
language”. In: Proceedings of Annual IEEE/ACM International Symposium on Code
Generation and Optimization. 2014, pp. 208–218.

[HP04] Laurent Hascoët and Valérie Pascual. TAPENADE 2.1 User’s Guide. Rapport tech-
nique 300. Sophia Antipolis: INRIA, 2004. url: http://www.inria.fr/rrrt/rt-
0300.html.

[HP13] L. Hascoët and V. Pascual. “The Tapenade Automatic Differentiation tool: Princi-
ples, Model, and Specification”. In: ACM Transactions on Mathematical Software
39.3 (2013), 20:1–20:43. url: http://dx.doi.org/10.1145/2450153.2450158.

[HWB15] Alexander Hück, Johannes Willkomm, and Christian Bischof. “Source Transforma-
tion for the Optimized Utilization of the Matlab Runtime System for Automatic
Differentiation”. In: Recent Trends in Computational Engineering - CE2014: Opti-
mization, Uncertainty, Parallel Algorithms, Coupled and Complex Problems. Ed. by
Miriam Mehl, Manfred Bischoff, and Michael Schäfer. Cham: Springer International
Publishing, 2015, pp. 115–131. isbn: 978-3-319-22997-3. doi: 10.1007/978-3-319-
22997-3_7. url: https://doi.org/10.1007/978-3-319-22997-3_7.

[JX95] Shi Jin and Zhouping Xin. “The relaxation schemes for systems of conservation laws
in arbitrary space dimensions”. In: Communications on pure and applied mathemat-
ics 48.3 (1995), pp. 235–276.

[JZ18] Ting Jiang and XiaoJian Zhou. “Gradient/Hessian-enhanced least square support
vector regression”. In: Information Processing Letters 134 (2018), pp. 1 –8. issn:
0020-0190. doi: https://doi.org/10.1016/j.ipl.2018.01.014. url: http:
//www.sciencedirect.com/science/article/pii/S0020019018300292.

114

http://www.ec-securehost.com/SIAM/OT105.html
http://www.ec-securehost.com/SIAM/OT105.html
https://doi.org/10.1007/3-540-28438-9_12
https://doi.org/10.1016/j.future.2004.11.010
http://www.sciencedirect.com/science/article/pii/S0167739X04001797
http://www.sciencedirect.com/science/article/pii/S0167739X04001797
https://doi.org/10.1016/j.future.2004.11.009
http://www.inria.fr/rrrt/rt-0300.html
http://www.inria.fr/rrrt/rt-0300.html
http://dx.doi.org/10.1145/2450153.2450158
https://doi.org/10.1007/978-3-319-22997-3_7
https://doi.org/10.1007/978-3-319-22997-3_7
https://doi.org/10.1007/978-3-319-22997-3_7
https://doi.org/https://doi.org/10.1016/j.ipl.2018.01.014
http://www.sciencedirect.com/science/article/pii/S0020019018300292
http://www.sciencedirect.com/science/article/pii/S0020019018300292

REFERENCES

[Kay01a] Michael Kay. “Saxon: Anatomy of an XSLT processor”. In: IBM DeveloperWorks
(2001). url: https://www.ibm.com/developerworks/library/x-xslt2/index.
html.

[Kay01b] Michael Kay. Saxon: the XSLT processor. 2001. url: http://sourceforge.net/
projects/saxon.

[Kay10] Michael Kay. “A streaming XSLT processor”. In: Balisage: The Markup Confer-
ence. 2010. url: https://www.balisage.net/Proceedings/vol5/print/Kay01/
BalisageVol5-Kay01.html.

[Kay15] Michael Kay. “Parallel Processing in the Saxon XSLT Processor”. In: XML Prague
2015. 2015. url: https://www.saxonica.com/papers/xmlprague-2015mhk.pdf.

[Kay20] Michael Kay. Saxon-JS XSLT Processor. 2020. url: https://www.saxonica.com/
html/saxon-js/index.html.

[Ked80] Gershon Kedem. “Automatic Differentiation of Computer Programs”. In: ACM Trans-
actions on Mathematical Software 6.2 (June 1980), pp. 150–165. doi: 10.1145/
355887.355890.

[Kes20] Anne van Kesteren. DOM. Tech. rep. Living Standard. whatwg.org, Sept. 2020. url:
https://dom.spec.whatwg.org/.

[KF06] Rahul V. Kharche and Shaun A. Forth. “Source Transformation for MATLAB Au-
tomatic Differentiation”. In: Computational Science – ICCS 2006. Ed. by Vassil
N. Alexandrov et al. Vol. 3994. Lecture Notes in Computer Science. Heidelberg:
Springer, 2006, pp. 558–565. isbn: 3-540-34385-7. doi: 10.1007/11758549_77.

[Kha12] Rahul Vijay Kharche. “Matlab automatic differentiation using source transforma-
tion”. PhD thesis. Cranfield University, 2012. url: https://dspace.lib.cranfield.
ac.uk/bitstream/handle/1826/7298/KharchePhD2011.pdf.

[Kru16] Fritz Kruger. CPU Bandwidth – The Worrisome 2020 Trend. 2016. url: https:
//blog.westerndigital.com/cpu-bandwidth-the-worrisome-2020-trend/.

[Kun+12] Julian M. Kunkel et al. “Towards an energy-aware scientific I/O interface”. English.
In: Computer Science - Research and Development 27.4 (2012), pp. 337–345. issn:
1865-2034. doi: 10.1007/s00450-011-0193-x. url: http://dx.doi.org/10.
1007/s00450-011-0193-x.

[LCD11] Komlanvi Lampoh, Isabelle Charpentier, and El Mostafa Daya. “A generic approach
for the solution of nonlinear residual equations. Part III: Sensitivity computations”.
In: Computer Methods in Applied Mechanics and Engineering 200.45 (2011), pp. 2983
–2990. issn: 0045-7825. doi: https://doi.org/10.1016/j.cma.2011.06.009. url:
http://www.sciencedirect.com/science/article/pii/S0045782511002271.

[Lee08] David Lee. XMLSH. 2008. url: http://xmlsh.org.
[Leu04] Theodore W. Leung. Professional XML Development with Apache Tools: Xerces,

Xalan, FOP, Cocoon, Axis, Xindice. John Wiley & Sons, 2004.
[Lev09] John Levine. Flex & Bison: Text Processing Tools. O’Reilly Media, Inc., 2009.
[Li+93] Y. Li et al. “Variational Data Assimilation with a Semi-Lagrangian Semi-implicit

Global Shallow-Water Equation Model and Its Adjoint”. In:Monthly Weather Review
121.6 (June 1993), pp. 1759–1769. issn: 0027-0644. doi: 10.1175/1520-0493(1993)
121<1759:VDAWAS>2.0.CO;2. url: https://doi.org/10.1175/1520-0493(1993)
121<1759:VDAWAS>2.0.CO;2.

[LK08] Angelika Langer and Klaus Kreft. Standard C++ IOStreams and Locales: Advanced
Programmer’s Guide and Reference. 1st. Boston, MA, USA: Addison-Wesley Profes-
sional, 2008. isbn: 0321585585, 9780321585585.

115

https://www.ibm.com/developerworks/library/x-xslt2/index.html
https://www.ibm.com/developerworks/library/x-xslt2/index.html
http://sourceforge.net/projects/saxon
http://sourceforge.net/projects/saxon
https://www.balisage.net/Proceedings/vol5/print/Kay01/BalisageVol5-Kay01.html
https://www.balisage.net/Proceedings/vol5/print/Kay01/BalisageVol5-Kay01.html
https://www.saxonica.com/papers/xmlprague-2015mhk.pdf
https://www.saxonica.com/html/saxon-js/index.html
https://www.saxonica.com/html/saxon-js/index.html
https://doi.org/10.1145/355887.355890
https://doi.org/10.1145/355887.355890
https://dom.spec.whatwg.org/
https://doi.org/10.1007/11758549_77
https://dspace.lib.cranfield.ac.uk/bitstream/handle/1826/7298/KharchePhD2011.pdf
https://dspace.lib.cranfield.ac.uk/bitstream/handle/1826/7298/KharchePhD2011.pdf
https://blog.westerndigital.com/cpu-bandwidth-the-worrisome-2020-trend/
https://blog.westerndigital.com/cpu-bandwidth-the-worrisome-2020-trend/
https://doi.org/10.1007/s00450-011-0193-x
http://dx.doi.org/10.1007/s00450-011-0193-x
http://dx.doi.org/10.1007/s00450-011-0193-x
https://doi.org/https://doi.org/10.1016/j.cma.2011.06.009
http://www.sciencedirect.com/science/article/pii/S0045782511002271
http://xmlsh.org
https://doi.org/10.1175/1520-0493(1993)121<1759:VDAWAS>2.0.CO;2
https://doi.org/10.1175/1520-0493(1993)121<1759:VDAWAS>2.0.CO;2
https://doi.org/10.1175/1520-0493(1993)121<1759:VDAWAS>2.0.CO;2
https://doi.org/10.1175/1520-0493(1993)121<1759:VDAWAS>2.0.CO;2

REFERENCES

[LK+13] Christopher M. Lalau-Keraly et al. “Adjoint shape optimization applied to elec-
tromagnetic design”. In: Opt. Express 21.18 (Sept. 2013), pp. 21693–21701. doi:
10.1364/OE.21.021693. url: http://www.opticsexpress.org/abstract.cfm?
URI=oe-21-18-21693.

[LM67] J.N. Lyness and C.B. Moler. “Numerical differentiation of analytic functions”. In:
SIAM Journal on Numerical Analysis 4.2 (1967), pp. 202–210.

[Lof+08] Jay F. Lofstead et al. “Flexible IO and integration for scientific codes through the
adaptable IO system (ADIOS)”. In: Proceedings of the 6th international workshop
on Challenges of large applications in distributed environments. CLADE ’08. Boston,
MA, USA: ACM, 2008, pp. 15–24. isbn: 978-1-60558-156-9. doi: 10.1145/1383529.
1383533. url: http://doi.acm.org/10.1145/1383529.1383533.

[Lun07] Fredrik Lundh. ElementTree Overview. Sept. 2007. url: http://effbot.org/zone/
element-index.htm.

[Mal+10] Grzegorz Malewicz et al. “Pregel: a system for large-scale graph processing”. In:
Proceedings of the 2010 ACM SIGMOD International Conference on Management
of data. 2010, pp. 135–146.

[Mat06] MathWorks. xslt. 2006. url: https://de.mathworks.com/help/matlab/ref/xslt.
html.

[Mat13] MathWorks. fmincon. 2013. url: https://de.mathworks.com/help/optim/ug/
fmincon.html.

[Mat18] MathWorks. Vectorization. 2018. url: https://www.mathworks.com/help/matlab/
matlab_prog/vectorization.html.

[MC05] J.-D. Müller and P. Cusdin. “On the performance of discrete adjoint CFD codes
using automatic differentiation”. In: International Journal for Numerical Methods
in Fluids 47.8-9 (2005), pp. 939–945. issn: 1097-0363. doi: 10.1002/fld.885. url:
http://dx.doi.org/10.1002/fld.885.

[MDN20] MDN contributors. Element.outerHTML - Web APIs | MDN. Feb. 2020. url: https:
//developer.mozilla.org/en-US/docs/Web/API/Element/outerHTML.

[MDN20a] MDN. <math> - MathML. 2020. url: https://developer.mozilla.org/en-
US/docs/Web/MathML/Element/math.

[MDN20b] MDN. <svg> - SVG: Scalable Vector Graphics. 2020. url: https://developer.
mozilla.org/en-US/docs/Web/SVG/Element/svg.

[MHM14] Viktor Mašíček and Irena Holubová (Mlýnková). “XSLTMark II – A Simple, Extensi-
ble and Portable XSLT Benchmark”. In: New Trends in Databases and Information
Systems. Ed. by Barbara Catania et al. Cham: Springer International Publishing,
2014, pp. 113–120. isbn: 978-3-319-01863-8.

[MMZ18] Priyadarshi Mahapatra, Jinliang Ma, and Stephen E Zitney. “Nonlinear Model Pre-
dictive Control Using Decoupled AB Net Formulation for Carbon Capture Systems-
Comparison with Algorithmic Differentiation Approach”. In: 2018 Annual American
Control Conference (ACC). IEEE. 2018, pp. 6439–6444.

[MR96] Michael Monagan and René R. Rodoni. “An Implementation of the Forward and Re-
verse mode in Maple”. In: Computational Differentiation: Techniques, Applications,
and Tools. Ed. by Martin Berz et al. Philadelphia, PA: SIAM, 1996, pp. 353–362.
isbn: 0–89871–385–4.

[Mur+05] Makoto Murata et al. “Taxonomy of XML schema languages using formal language
theory”. In: ACM Transactions on Internet Technology (TOIT) 5.4 (2005), pp. 660–
704.

116

https://doi.org/10.1364/OE.21.021693
http://www.opticsexpress.org/abstract.cfm?URI=oe-21-18-21693
http://www.opticsexpress.org/abstract.cfm?URI=oe-21-18-21693
https://doi.org/10.1145/1383529.1383533
https://doi.org/10.1145/1383529.1383533
http://doi.acm.org/10.1145/1383529.1383533
http://effbot.org/zone/element-index.htm
http://effbot.org/zone/element-index.htm
https://de.mathworks.com/help/matlab/ref/xslt.html
https://de.mathworks.com/help/matlab/ref/xslt.html
https://de.mathworks.com/help/optim/ug/fmincon.html
https://de.mathworks.com/help/optim/ug/fmincon.html
https://www.mathworks.com/help/matlab/matlab_prog/vectorization.html
https://www.mathworks.com/help/matlab/matlab_prog/vectorization.html
https://doi.org/10.1002/fld.885
http://dx.doi.org/10.1002/fld.885
https://developer.mozilla.org/en-US/docs/Web/API/Element/outerHTML
https://developer.mozilla.org/en-US/docs/Web/API/Element/outerHTML
https://developer.mozilla.org/en-US/docs/Web/MathML/Element/math
https://developer.mozilla.org/en-US/docs/Web/MathML/Element/math
https://developer.mozilla.org/en-US/docs/Web/SVG/Element/svg
https://developer.mozilla.org/en-US/docs/Web/SVG/Element/svg

REFERENCES

[MW14] Jorge J. Moré and Stefan M.Wild. “Do you trust derivatives or differences?” In: Jour-
nal of Computational Physics 273 (2014), pp. 268 –277. issn: 0021-9991. doi: https:
//doi.org/10.1016/j.jcp.2014.04.056. url: http://www.sciencedirect.com/
science/article/pii/S0021999114003325.

[Nad03] Siva Kumaran Nadarajah. “The discrete adjoint approach to aerodynamic shape
optimization”. PhD thesis. Citeseer, 2003. doi: 10.2514/6.2001-2530. url: https:
//arc.aiaa.org/doi/10.2514/6.2001-2530.

[Nau02] Uwe Naumann. “Reducing the Memory Requirement in Reverse Mode Automatic
Differentiation by Solving TBR Flow Equations”. In: Computational Science —
ICCS 2002. Ed. by Peter M. A. Sloot et al. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2002, pp. 1039–1048. isbn: 978-3-540-46080-0.

[Nau+04] Uwe Naumann et al. “Control flow reversal for adjoint code generation”. In: Source
Code Analysis and Manipulation, Fourth IEEE International Workshop on. IEEE.
2004, pp. 55–64.

[Nau+06] Uwe Naumann et al. “Adjoint code by source transformation with OpenAD/F”. In:
ECCOMAS CFD 2006: Proceedings of the European Conference on Computational
Fluid Dynamics, Egmond aan Zee, The Netherlands, September 5-8, 2006. Delft Uni-
versity of Technology; European Community on Computational Methods in Applied
Sciences (ECCOMAS). 2006.

[Nau08] Uwe Naumann. “Call Tree Reversal is NP-Complete”. In: Advances in Automatic
Differentiation. Ed. by Christian H. Bischof et al. Vol. 64. Lecture Notes in Com-
putational Science and Engineering. Berlin: Springer, 2008, pp. 13–22. isbn: 978-3-
540-68935-5. doi: 10.1007/978-3-540-68942-3_2.

[Nei10] Richard D. Neidinger. “Introduction to Automatic Differentiation and MATLAB
Object-Oriented Programming”. In: SIAM Review 52.3 (2010), pp. 545–563.

[Nic01] Miloslav Nic. Graphotron – XPath based generation of graphs from XML documents.
2001. url: https://www.oxygenxml.com/archives/xsl-list/200112/msg00784.
html.

[NJ01] Siva Nadarajah and Antony Jameson. “Studies of the continuous and discrete adjoint
approaches to viscous automatic aerodynamic shape optimization”. In: 15th AIAA
Computational Fluid Dynamics Conference. June 2001. doi: 10.2514/6.2001-2530.
url: https://arc.aiaa.org/doi/abs/10.2514/6.2001-2530.

[NK07] Petr Nalevka and Jirka Kosek. “Advanced approaches to XML document valida-
tion”. In: Extreme Markup Languages, Montreal, Québec (Aug. 2007). url: http:
//citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.134.7634&rep=
rep1&type=pdf.

[NR06] Uwe Naumann and Jan Riehme. “Computing Adjoints with the NAGWare Fortran
95 Compiler”. In: Automatic Differentiation: Applications, Theory, and Implemen-
tations. Ed. by Martin Bücker et al. Berlin, Heidelberg: Springer Berlin Heidelberg,
2006, pp. 159–169. isbn: 978-3-540-28438-3.

[Obj17] Object Management Group. Unified Modeling Language. 2017. url: https://www.
omg.org/spec/UML/.

[oct12] octave.org. Broadcasting. 2012. url: https://octave.org/doc/interpreter/
Broadcasting.html.

[Oom17] Jeroen Ooms. xslt: Extensible Style-Sheet Language Transformations. 2017. url:
https://CRAN.R-project.org/package=xslt.

[Ope08] OpenMP Architecture Review Board. OpenMP 3.0 Specifications. 2008. url: https:
//www.openmp.org/wp-content/uploads/spec30.pdf.

117

https://doi.org/https://doi.org/10.1016/j.jcp.2014.04.056
https://doi.org/https://doi.org/10.1016/j.jcp.2014.04.056
http://www.sciencedirect.com/science/article/pii/S0021999114003325
http://www.sciencedirect.com/science/article/pii/S0021999114003325
https://doi.org/10.2514/6.2001-2530
https://arc.aiaa.org/doi/10.2514/6.2001-2530
https://arc.aiaa.org/doi/10.2514/6.2001-2530
https://doi.org/10.1007/978-3-540-68942-3_2
https://www.oxygenxml.com/archives/xsl-list/200112/msg00784.html
https://www.oxygenxml.com/archives/xsl-list/200112/msg00784.html
https://doi.org/10.2514/6.2001-2530
https://arc.aiaa.org/doi/abs/10.2514/6.2001-2530
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.134.7634&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.134.7634&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.134.7634&rep=rep1&type=pdf
https://www.omg.org/spec/UML/
https://www.omg.org/spec/UML/
https://octave.org/doc/interpreter/Broadcasting.html
https://octave.org/doc/interpreter/Broadcasting.html
https://CRAN.R-project.org/package=xslt
https://www.openmp.org/wp-content/uploads/spec30.pdf
https://www.openmp.org/wp-content/uploads/spec30.pdf

REFERENCES

[Pas09] Ruud van der Pas. “An overview of OpenMP 3.0”. In: International Workshop on
OpenMP. 2009.

[PBC95] G.D. Pusch, C. Bischof, and A. Carle. “On automatic differentiation of codes with
COMPLEX arithmetic with respect to real variables”. In: 2 2.2 (June 1995). doi:
10.2172/95498.

[Pet07] M. Petera. “Automatic differentiation for portable process systems models”. In: Pro-
ceedings in Applied Mathematics and Mechanics 7.1 (2007), pp. 1140201–1140202.
doi: 10.1002/pamm.200700308.

[Pet12] Monika Petera. “Automatic differentiation of the CapeML high-level language for
process engineering”. PhD thesis. RWTH Aachen University, 2012. url: http://
darwin.bth.rwth-aachen.de/opus3/volltexte/2012/4044/.

[PF71] Terrence W Pratt and Daniel P Friedman. “A language extension for graph process-
ing and its formal semantics”. In: Communications of the ACM 14.7 (1971), pp. 460–
467.

[PH05] Valérie Pascual and Laurent Hascoët. “Extension of TAPENADE toward Fortran 95”.
In: Automatic Differentiation: Applications, Theory, and Implementations. Ed. by H.
M. Bücker et al. Vol. 50. Lecture Notes in Computational Science and Engineering.
New York, NY: Springer, 2005, pp. 171–179. doi: 10.1007/3-540-28438-9_15.

[PH08] Valérie Pascual and Laurent Hascoët. “TAPENADE for C”. In: Advances in Auto-
matic Differentiation. Ed. by Christian H. Bischof et al. Vol. 64. Lecture Notes in
Computational Science and Engineering. Berlin: Springer, 2008, pp. 199–209. isbn:
978-3-540-68935-5. doi: 10.1007/978-3-540-68942-3_18.

[POS01] POSIX.1. IEEE Std 1003.1:2001. Standard for Information Technology – Portable
Operating System Interface (POSIX). The Institute of Electrical and Electronic En-
gineers. 2001.

[PQ95] Terence J. Parr and Russell W. Quong. “ANTLR: A predicated-LL(k) parser gener-
ator”. In: Software: Practice and Experience 25.7 (1995), pp. 789–810.

[Pur+95] A. Purakayastha et al. “Characterizing parallel file-access patterns on a large-scale
multiprocessor”. In: Parallel Processing Symposium, 1995. Proceedings., 9th Inter-
national. Santa Barbara, California, USA, 1995, pp. 165–172. doi: 10.1109/IPPS.
1995.395928.

[PWR13] Michael A Patterson, Matthew Weinstein, and Anil V Rao. “An efficient overloaded
method for computing derivatives of mathematical functions in MATLAB”. In: ACM
Transactions on Mathematical Software (TOMS) 39.3 (2013), pp. 1–36.

[PZG05] DI Papadimitriou, AS Zymaris, and KC Giannakoglou. “Discrete and continuous
adjoint formulations for turbomachinery applications”. In: EUROGEN 2005, Munich
(2005), pp. 12–14.

[Rac+18] Christopher Rackauckas et al. “A Comparison of Automatic Differentiation and Con-
tinuous Sensitivity Analysis for Derivatives of Differential Equation Solutions”. In:
CoRR abs/1812.01892 (2018). arXiv: 1812.01892. url: http://arxiv.org/abs/
1812.01892.

[Rag20] Dave Raggett. HTML Tidy. 2020. url: http://www.htacg.org/.
[Ral81] Louis B. Rall. Automatic Differentiation: Techniques and Applications. Vol. 120.

Lecture Notes in Computer Science. Berlin: Springer, 1981. isbn: 0–540–10861–0.
doi: 10.1007/3-540-10861-0.

[RB20] M. Ali Rostami and H. Martin Bücker. “Preconditioning Jacobian Systems by Super-
imposing Diagonal Blocks”. In: Computational Science – ICCS 2020. Ed. by Valeria
V. Krzhizhanovskaya et al. Cham: Springer International Publishing, 2020, pp. 101–
115. isbn: 978-3-030-50417-5.

118

https://doi.org/10.2172/95498
https://doi.org/10.1002/pamm.200700308
http://darwin.bth.rwth-aachen.de/opus3/volltexte/2012/4044/
http://darwin.bth.rwth-aachen.de/opus3/volltexte/2012/4044/
https://doi.org/10.1007/3-540-28438-9_15
https://doi.org/10.1007/978-3-540-68942-3_18
https://doi.org/10.1109/IPPS.1995.395928
https://doi.org/10.1109/IPPS.1995.395928
https://arxiv.org/abs/1812.01892
http://arxiv.org/abs/1812.01892
http://arxiv.org/abs/1812.01892
http://www.htacg.org/
https://doi.org/10.1007/3-540-10861-0

REFERENCES

[Reu+96] J. Reuther et al. “Aerodynamic shape optimization of complex aircraft configurations
via an adjoint formulation”. In: 34th Aerospace Sciences Meeting and Exhibit. Jan.
1996. doi: 10.2514/6.1996-94. url: https://arc.aiaa.org/doi/abs/10.2514/
6.1996-94.

[SA09] Victor Travassos Sarinho and Antônio Lopes Apolinário. “A generative programming
approach for game development”. In:Games and Digital Entertainment (SBGAMES),
2009 VIII Brazilian Symposium on. IEEE. 2009, pp. 83–92.

[Sav+12] R. Savitha et al. “A fully complex-valued radial basis function classifier for real-
valued classification problems”. In: Neurocomputing 78.1 (2012). Selected papers
from the 8th International Symposium on Neural Networks (ISNN 2011), pp. 104
–110. issn: 0925-2312. doi: https://doi.org/10.1016/j.neucom.2011.05.036.
url: http://www.sciencedirect.com/science/article/pii/S0925231211004838.

[SBL12] Laurent Sorber, Marc Van Barel, and Lieven De Lathauwer. “Unconstrained opti-
mization of real functions in complex variables”. In: SIAM Journal on Optimization
22.3 (July 2012), pp. 879–898. url: https://lirias.kuleuven.be/bitstream/
123456789/342824/2/complex_optimization.pdf.

[SBL13] Laurent Sorber, Marc Van Barel, and Lieven De Lathauwer. Complex Optimization
Toolbox v1.0. Tech. rep. KU Leuven, Feb. 2013. url: http://esat.kuleuven.be/
sista/cot/.

[SD10] Raymond J Spiteri and Ryan C Dean. “Stiffness analysis of cardiac electrophysio-
logical models”. In: Annals of biomedical engineering 38.12 (2010), pp. 3592–3604.

[Seu+12] S. Seuren et al. “Sensitivity Analysis of a Force and Microstructure Model for Plate
Rolling”. In: Proceedings of the 14th International Conference on Metal Forming
(Metal Forming 2012). Ed. by J. Kusiak, J. Majta, and D. Szeliga. AGH University
of Science and Technology. Krakow, Poland: Wiley-VCH, Sept. 2012, pp. 91–94.

[Seu+13] S. Seuren et al. “Analyse von Sensitivitäten bei der Modellierung des Grobblech-
walzens”. In: 28. Aachener Stahl Kolloquium Umformtechnik (ASK 2013), Tagungs-
band. Ed. by G. Hirt. RWTH Aachen University. Aachen, Germany: Verlag Mainz,
Mar. 2013, pp. 111–121.

[SF16] Soroush Saadatfar and David Filip. “Best Practice for DSDL-based Validation”. In:
XML London 2016 Conference Proceedings. Presented at the XML London. 2016.

[SH02] Frank Schmuck and Roger Haskin. “GPFS: A shared-disk file system for large com-
puting clusters”. In: Proceedings of the First USENIX Conference on File and Storage
Technologies. Monterey, California, USA, 2002, pp. 231–244.

[SKF18] Filip Srajer, Zuzana Kukelova, and Andrew Fitzgibbon. “A benchmark of selected
algorithmic differentiation tools on some problems in computer vision and machine
learning”. In: Optimization Methods and Software 33.4-6 (2018), pp. 889–906. doi:
10.1080/10556788.2018.1435651. eprint: https://doi.org/10.1080/10556788.
2018.1435651. url: https://doi.org/10.1080/10556788.2018.1435651.

[Sta15] Richard Stallman. GNU Emacs. 2015. url: https://www.gnu.org/software/
emacs/.

[SW13] Semih Salihoglu and Jennifer Widom. “GPS: A graph processing system”. In: Pro-
ceedings of the 25th International Conference on Scientific and Statistical Database
Management. 2013, pp. 1–12.

[TFP03] Mohamed Tadjouddine, Shaun A. Forth, and John D. Pryce. “Hierarchical Auto-
matic Differentiation by Vertex Elimination and Source Transformation”. In: Com-
putational Science and Its Applications – ICCSA 2003, Proceedings of the Interna-
tional Conference on Computational Science and its Applications, Montreal, Canada,
May 18–21, 2003. Part II. Ed. by V. Kumar et al. Vol. 2668. Lecture Notes in Com-
puter Science. Berlin: Springer, 2003, pp. 115–124.

119

https://doi.org/10.2514/6.1996-94
https://arc.aiaa.org/doi/abs/10.2514/6.1996-94
https://arc.aiaa.org/doi/abs/10.2514/6.1996-94
https://doi.org/https://doi.org/10.1016/j.neucom.2011.05.036
http://www.sciencedirect.com/science/article/pii/S0925231211004838
https://lirias.kuleuven.be/bitstream/123456789/342824/2/complex_optimization.pdf
https://lirias.kuleuven.be/bitstream/123456789/342824/2/complex_optimization.pdf
http://esat.kuleuven.be/sista/cot/
http://esat.kuleuven.be/sista/cot/
https://doi.org/10.1080/10556788.2018.1435651
https://doi.org/10.1080/10556788.2018.1435651
https://doi.org/10.1080/10556788.2018.1435651
https://doi.org/10.1080/10556788.2018.1435651
https://www.gnu.org/software/emacs/
https://www.gnu.org/software/emacs/

REFERENCES

[TGL02] Rajeev Thakur, William Gropp, and Ewing Lusk. “Optimizing noncontiguous ac-
cesses in MPI–IO”. In: Parallel Computing 28.1 (2002), pp. 83–105.

[The11] The Apache Software Foundation. Apache Xalan. 2011. url: https : / / xalan .
apache.org/.

[The13] The Apache Software Foundation. Cocoon Main Site. 2013. url: https://cocoon.
apache.org/.

[The20] The Apache Software Foundation. Apache Batik SVG Toolkit. May 2020. url: https:
//xmlgraphics.apache.org/batik/.

[The99] The Apache Software Foundation. Xalan-C++ version 1.10. 1999. url: https://
xalan.apache.org/old/xalan-c/index.html.

[Tho+04] Henry S Thompson et al. “XML schema part 1: structures second edition”. In: W3C
Recommendation (2004). url: https://www.w3.org/TR/xmlschema-1/.

[Tho15] Oliver Thoma. “Optimale Steuerung der relativistischen Maxwell-Newton-Lorentz
Gleichungen”. PhD thesis. Technische Universität Dortmund, 2015. url: https:
//eldorado.tu-dortmund.de/bitstream/2003/34349/1/Dissertation.pdf.

[TKC13] C. Terboven, P. Kapinos, and T. Cramer. Personal communication. 2013.
[TLG04] R. Thakur, E. Lusk, and W. Gropp. Users guide for ROMIO: A high-performance,

portable MPI-IO implementation. Tech. rep. ANL/MCS-TM-234, Mathematics and
Computer Science Division, Argonne National Laboratory, 2004.

[Tro20] Ulya Trofimovich. “RE2C: A lexer generator based on lookahead-TDFA”. In: Soft-
ware Impacts 6 (2020), p. 100027. issn: 2665-9638. doi: https://doi.org/10.
1016/j.simpa.2020.100027. url: http://www.sciencedirect.com/science/
article/pii/S266596382030018X.

[Utk+08a] Jean Utke et al. “OpenAD/F: A Modular Open-Source Tool for Automatic Differ-
entiation of Fortran Codes”. In: ACM Trans. Math. Softw. 34.4 (July 2008). issn:
0098-3500. doi: 10.1145/1377596.1377598. url: https://doi.org/10.1145/
1377596.1377598.

[Utk+08b] Jean Utke et al. “OpenAD/F: A modular open-source tool for automatic differenti-
ation of Fortran codes”. In: ACM Transactions on Mathematical Software (TOMS)
34.4 (2008), pp. 1–36.

[Veh09] André Vehreschild. “Automatisches Differenzieren für MATLAB”. PhD thesis. RWTH
Aachen University, 2009. url: http://darwin.bth.rwth- aachen.de/opus3/
volltexte/2009/2680/.

[Vei03] Daniel Veillard. Libxslt–The XSLT C library for Gnome. 2003. url: http://xmlsoft.
org/libxslt.

[Vei04] Daniel Veillard. Libxml2–The XML C parser and toolkit of Gnome. 2004. url: http:
//www.xmlsoft.org.

[VW13] André Vehreschild and Johannes Willkomm. The ADiMat Handbook. May 2013. url:
http://adimat.sc.informatik.tu-darmstadt.de/doc/.

[W3C02] W3C. An XHTML + MathML + SVG Profile. Aug. 2002. url: https://www.w3.
org/TR/XHTMLplusMathMLplusSVG/.

[W3C04] W3C. Document Object Model (DOM) Level 3 Core Specification. Apr. 2004. url:
https://www.w3.org/TR/DOM-Level-3-Core/.

[W3C09] W3C, XML Core Working Group. Namespaces in XML 1.0. Dec. 2009. url: https:
//www.w3.org/TR/REC-xml-names/.

[W3C20] W3C. DOM Parsing and Serialization. Apr. 2020. url: https://w3c.github.io/
DOM-Parsing/.

120

https://xalan.apache.org/
https://xalan.apache.org/
https://cocoon.apache.org/
https://cocoon.apache.org/
https://xmlgraphics.apache.org/batik/
https://xmlgraphics.apache.org/batik/
https://xalan.apache.org/old/xalan-c/index.html
https://xalan.apache.org/old/xalan-c/index.html
https://www.w3.org/TR/xmlschema-1/
https://eldorado.tu-dortmund.de/bitstream/2003/34349/1/Dissertation.pdf
https://eldorado.tu-dortmund.de/bitstream/2003/34349/1/Dissertation.pdf
https://doi.org/https://doi.org/10.1016/j.simpa.2020.100027
https://doi.org/https://doi.org/10.1016/j.simpa.2020.100027
http://www.sciencedirect.com/science/article/pii/S266596382030018X
http://www.sciencedirect.com/science/article/pii/S266596382030018X
https://doi.org/10.1145/1377596.1377598
https://doi.org/10.1145/1377596.1377598
https://doi.org/10.1145/1377596.1377598
http://darwin.bth.rwth-aachen.de/opus3/volltexte/2009/2680/
http://darwin.bth.rwth-aachen.de/opus3/volltexte/2009/2680/
http://xmlsoft.org/libxslt
http://xmlsoft.org/libxslt
http://www.xmlsoft.org
http://www.xmlsoft.org
http://adimat.sc.informatik.tu-darmstadt.de/doc/
https://www.w3.org/TR/XHTMLplusMathMLplusSVG/
https://www.w3.org/TR/XHTMLplusMathMLplusSVG/
https://www.w3.org/TR/DOM-Level-3-Core/
https://www.w3.org/TR/REC-xml-names/
https://www.w3.org/TR/REC-xml-names/
https://w3c.github.io/DOM-Parsing/
https://w3c.github.io/DOM-Parsing/

REFERENCES

[Wal99] Andrea Walther. “Program Reversal Schedules for Single- and Multi-processor Ma-
chines”. PhD thesis. Germany: Institute of Scientific Computing, Technical Univer-
sity Dresden, 1999.

[WB10] J. Willkomm and H. M. Bücker. Adjoint transformation of binary MATLAB op-
erators. Preprint of the Institute for Scientific Computing RWTH–CS–SC–10–04.
Aachen: RWTH Aachen University, 2010.

[WBB12] J. Willkomm, C. H. Bischof, and H. M. Bücker. “The impact of dynamic data re-
shaping on adjoint code generation for weakly-typed languages such as Matlab”. In:
Recent Advances in Automatic Differentiation. Ed. by Shaun Forth et al. Vol. 87.
Lecture Notes in Computational Science and Engineering. Berlin: Springer, 2012,
pp. 127–138. isbn: 978-3-642-30022-6. doi: 10.1007/978-3-642-30023-3.

[WBB14] Johannes Willkomm, Christian H. Bischof, and H. Martin Bücker. “A new user
interface for ADiMat: toward accurate and efficient derivatives of MATLAB pro-
grammes with ease of use”. In: International Journal of Computational Science and
Engineering 9.5-6 (2014), pp. 408–415. doi: 10.1504/IJCSE.2014.064526. url:
https://www.inderscienceonline.com/doi/abs/10.1504/IJCSE.2014.064526.

[WBMB15] Johannes Willkomm, Christian Bischof, and H. Martin Bücker. “RIOS: efficient I/O
in reverse direction”. In: Software: Practice and Experience 45.10 (2015), pp. 1399–
1427. issn: 1097-024X. doi: 10.1002/spe.2252. url: http://dx.doi.org/10.
1002/spe.2252.

[WHO15] Hadley Wickham, Jim Hester, and Jeroen Ooms. xml2: Parse XML. 2015. url:
https://CRAN.R-project.org/package=xml2.

[Wie+13] MarcC. Wiedemann et al. “Towards I/O analysis of HPC systems and a generic
architecture to collect access patterns”. English. In: Computer Science - Research and
Development 28.2-3 (2013), pp. 241–251. issn: 1865-2034. doi: 10.1007/s00450-
012-0221-5. url: http://dx.doi.org/10.1007/s00450-012-0221-5.

[Wik19a] Wikipedia. Cauchy–Riemann equations. 2019. url: https://en.wikipedia.org/
wiki/Cauchy-Riemann_equations.

[Wik19b] Wikipedia. Well-formed document. Sept. 2019. url: https://en.wikipedia.org/
wiki/Well-formed_document.

[Wik19c] Wikipedia. Wirtinger derivatives. 2019. url: https://en.wikipedia.org/wiki/
Wirtinger_derivatives.

[Wik20a] Wikipedia. Apache Airflow. July 2020. url: https://en.wikipedia.org/wiki/
Apache_Airflow.

[Wik20b] Wikipedia. DevOps. July 2020. url: https://en.wikipedia.org/wiki/DevOps.
[Wik20c] Wikipedia. Identity transform. May 2020. url: https://en.wikipedia.org/wiki/

Identity_transform.
[Wik20d] Wikipedia. Infrastructure as code. July 2020. url: https://en.wikipedia.org/

wiki/Infrastructure_as_code.
[Wik20e] Wikipedia. Numerical differentiation. July 2020. url: https://en.wikipedia.org/

wiki/Numerical_differentiation.
[Wik20f] Wikipedia. Software as a service. July 2020. url: https://en.wikipedia.org/

wiki/Software_as_a_service.
[Wik20g] Wikipedia. XML pipeline. May 2020. url: https://en.wikipedia.org/wiki/XML_

pipeline.
[Wik20h] Wikipedia. XSLT. July 2020. url: https://en.wikipedia.org/wiki/XSLT.
[Wil10] Johannes Willkomm. Generating adjoint expressions for Matlab. 2010. url: https:

//tuprints.ulb.tu-darmstadt.de/3428/1/willkomm-euroad10.pdf.

121

https://doi.org/10.1007/978-3-642-30023-3
https://doi.org/10.1504/IJCSE.2014.064526
https://www.inderscienceonline.com/doi/abs/10.1504/IJCSE.2014.064526
https://doi.org/10.1002/spe.2252
http://dx.doi.org/10.1002/spe.2252
http://dx.doi.org/10.1002/spe.2252
https://CRAN.R-project.org/package=xml2
https://doi.org/10.1007/s00450-012-0221-5
https://doi.org/10.1007/s00450-012-0221-5
http://dx.doi.org/10.1007/s00450-012-0221-5
https://en.wikipedia.org/wiki/Cauchy-Riemann_equations
https://en.wikipedia.org/wiki/Cauchy-Riemann_equations
https://en.wikipedia.org/wiki/Well-formed_document
https://en.wikipedia.org/wiki/Well-formed_document
https://en.wikipedia.org/wiki/Wirtinger_derivatives
https://en.wikipedia.org/wiki/Wirtinger_derivatives
https://en.wikipedia.org/wiki/Apache_Airflow
https://en.wikipedia.org/wiki/Apache_Airflow
https://en.wikipedia.org/wiki/DevOps
https://en.wikipedia.org/wiki/Identity_transform
https://en.wikipedia.org/wiki/Identity_transform
https://en.wikipedia.org/wiki/Infrastructure_as_code
https://en.wikipedia.org/wiki/Infrastructure_as_code
https://en.wikipedia.org/wiki/Numerical_differentiation
https://en.wikipedia.org/wiki/Numerical_differentiation
https://en.wikipedia.org/wiki/Software_as_a_service
https://en.wikipedia.org/wiki/Software_as_a_service
https://en.wikipedia.org/wiki/XML_pipeline
https://en.wikipedia.org/wiki/XML_pipeline
https://en.wikipedia.org/wiki/XSLT
https://tuprints.ulb.tu-darmstadt.de/3428/1/willkomm-euroad10.pdf
https://tuprints.ulb.tu-darmstadt.de/3428/1/willkomm-euroad10.pdf

REFERENCES

[Wil13a] Johannes Willkomm. Computing Second Order Derivatives with ADiMat. Tech. rep.
TU Darmstadt, 2013. url: https://tuprints.ulb.tu-darmstadt.de/3432/1/
presentation-iwr-willkomm-2013.pdf.

[Wil13b] Johannes Willkomm. P2X – Universal parser with XML output. 2013. url: http:
//github.org/rainac/p2x/.

[Wil13c] Johannes Willkomm. Reverse mode IO stream. 2013. url: https://ourproject.
org/projects/rios.

[Wil18] Johannes Willkomm. “Automatic differentiation of ODE integration”. In: CoRR
abs/1802.02247 (2018). arXiv: 1802.02247. url: http://arxiv.org/abs/1802.
02247.

[Wil20a] Johannes Willkomm. R2X – R to XML Bridge. 2020. url: http://github.org/
rainac/r2x/.

[Wil20b] Johannes Willkomm. R/ADR Transformation Server. 2020. url: http://r-adr.
de/.

[Wil20c] Johannes Willkomm. XC – Electronic document and workflow system. 2020. url:
https://github.com/aiandit/xc.

[Wil20d] Johannes Willkomm. XHLP – XML Hierarchical Linear Pipelines. 2020. url: https:
//github.com/aiandit/xhlp.

[Wir27] W. Wirtinger. “Zur formalen Theorie der Funktionen von mehr komplexen Verän-
derlichen”. In: Mathematische Annalen 97 (1927), pp. 357–375. url: https://doi.
org/10.1007/BF01447872.

[WMT10] Norman Walsh, Alex Milowski, and Henry S. Thompson. XProc: An XML Pipeline
Language. Tech. rep. World Wide Web Consortium (W3C), May 2010. url: http:
//www.w3.org/TR/xproc/.

[WR17] Matthew J. Weinstein and Anil V. Rao. “Algorithm 984: ADiGator, a Toolbox for the
Algorithmic Differentiation of Mathematical Functions in MATLAB Using Source
Transformation via Operator Overloading”. In: ACM Trans. Math. Softw. 44.2 (Aug.
2017). issn: 0098-3500. doi: 10.1145/3104990. url: https://doi.org/10.1145/
3104990.

[Zho96] Wu Zhongde. “A Thermoelastic Hydrodynamics Analysis of EMP-segments of Thrust
Bearing”. In: LARGE ELECTRIC MACHINE AND HYDRAULIC TURBINE 5
(1996).

[ZM16] H. Zhang and D. P. Mandic. “Is a Complex-Valued Stepsize Advantageous in Complex-
Valued Gradient Learning Algorithms?” In: IEEE Transactions on Neural Networks
and Learning Systems 27.12 (Dec. 2016), pp. 2730–2735. doi: 10.1109/TNNLS.2015.
2494361.

122

https://tuprints.ulb.tu-darmstadt.de/3432/1/presentation-iwr-willkomm-2013.pdf
https://tuprints.ulb.tu-darmstadt.de/3432/1/presentation-iwr-willkomm-2013.pdf
http://github.org/rainac/p2x/
http://github.org/rainac/p2x/
https://ourproject.org/projects/rios
https://ourproject.org/projects/rios
https://arxiv.org/abs/1802.02247
http://arxiv.org/abs/1802.02247
http://arxiv.org/abs/1802.02247
http://github.org/rainac/r2x/
http://github.org/rainac/r2x/
http://r-adr.de/
http://r-adr.de/
https://github.com/aiandit/xc
https://github.com/aiandit/xhlp
https://github.com/aiandit/xhlp
https://doi.org/10.1007/BF01447872
https://doi.org/10.1007/BF01447872
http://www.w3.org/TR/xproc/
http://www.w3.org/TR/xproc/
https://doi.org/10.1145/3104990
https://doi.org/10.1145/3104990
https://doi.org/10.1145/3104990
https://doi.org/10.1109/TNNLS.2015.2494361
https://doi.org/10.1109/TNNLS.2015.2494361

	Preface
	Zusammenfassung
	Abstract
	Contents
	Introduction
	The reverse mode of automatic differentiation
	Scientific contributions of the author in this work
	Structure of this work

	ADiMat
	What AD can do and where AD is employed
	The design and development of ADiMat
	Releated work
	Other languages
	Software that incorporates AD
	ADiMat namesakes

	ADiMat use cases
	Derivative classes
	Forward mode source transformation
	Reverse mode source transformation
	The ADiMat transformation server
	Stacks for the reverse mode
	Alternative derivative evaluations
	Taylor propagation
	Hessian evaluation
	Alternative Hessian evaluation modes
	Hessian of Lagrangian

	Adjoint code generator techniques
	Data model and structural manipulations
	Binary scalar expansion
	Generalized binary scalar expansion
	Automatic generalized binary scalar expansion in Octave

	Array selections: indexed expressions and assignments
	Multiple pairs of parentheses in expressions

	Optimization
	Complex expansion

	Efficient I/O for the reverse mode
	Introduction
	Related work on I/O in high-performance computing
	The need for accessing data in reverse order
	An interface between RIOS and automatic differentiation tools
	Stack interfaces in Tapenade
	Stack interfaces in ADiMat
	Common backend for ADiMat and Tapenade stacks

	RIOS: A custom stream buffer for reverse reading
	File I/O facilities in C and C++
	Buffering strategies of file I/O in C
	Buffering strategies of file I/O in C++
	Design and implementation of custom stream buffers
	Architecture and buffering strategy of a special-purpose stream buffer for reverse reading

	Performance results
	Test A: Artificial simulation code
	Test B: Solution of Burgers equation

	Conclusion and Future work
	Source code listings

	The differentiation of selected MATLAB toolbox functions and builtins
	Generic approaches to the differentiation of toolbox functions and builtins
	Arithmetic propagation
	Structural propagation
	Algorithmic propagation

	Case study: Legendre functions
	Case study: the multiplication operators
	Component-wise multiplication
	Matrix multiplication
	Convolution
	Kronecker product

	Treeprocessing with XML and XSLT for AD and other structural transformations
	XML terms and definitions
	XML documents with the leaf text property

	XPath and XSLT terms and definitions
	The literal output principle of XSLT

	The expressive level of XML compared to other data structures
	The expressive level of XSLT compared to other languages
	AST representation in XML
	XML AST elements and namespaces
	XML AST examples
	Abstract XML AST elements and namespaces

	XSLT processing steps for AST XML
	The suspension bridge design model for the adjoint code generator
	Facilitating XML and XSLT processing for problem solving
	Setting up XSLT pipelines
	P2X
	R2X

	Generative programming with XSLT
	Generating XML pipeline definitions

	Case study: The XC electronic document system
	Production use of XC system at fionec GmbH

	XML document types, schemas and validation

	Complex arithmetic
	Methods to evaluate derivatives of non-analytic complex arithmetic
	Application of complex arithmetic in forward-mode AD
	Application of complex arithmetic in reverse-mode AD
	Case Study: A fully non-analytic example
	Case study: the norm function and application to complex optimization

	Conclusion
	References

